Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(2): 102059, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554065

RESUMO

In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation.

2.
Nat Commun ; 5: 3978, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24865297

RESUMO

The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments.


Assuntos
Adaptação Fisiológica/genética , Genoma de Planta , Estreptófitas/genética , Clorofila/metabolismo , Transporte de Elétrons , Fluorescência , Genes de Plantas , Espectrometria de Massas , Microscopia de Interferência , Dados de Sequência Molecular , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Transdução de Sinais
3.
Chemistry ; 9(18): 4485-509, 2003 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-14502636

RESUMO

The highly enantioselective borohydride reduction of aromatic ketones or imines to the corresponding alcohols was developed in the presence of a catalytic amount of an optically active cobalt(II) complex catalyst. This enantioselective reduction is carried out using a precisely premodified borohydride with alcohols such as tetrahydrofurfuryl alcohol, ethanol and methanol. High optical yields are obtained by choosing the appropriate alcohol as modifiers and a suitable beta-ketoiminato ligand of the catalyst. The enantioselective borohydride reduction has been successfully applied to the preparation of optically active 1,3-diols, the stereoselective reduction of diacylferrocenes, and dynamic and/or kinetic resolution of 1,3-dicarbonyl compounds.

4.
Org Lett ; 5(20): 3555-8, 2003 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-14507171

RESUMO

[reaction: see text] The enantioselective borodeuteride reduction catalyzed by optically active beta-ketoiminato cobalt complexes was applied to N-(di(o-tolyl)phosphinyl)aldimines to afford the corresponding optically active deuterated primary amines in high yields with high enantiomeric excesses after simple deprotection. The present deuteride reduction of aldimines is in the opposite sense of the enantioselective for the previously reported borohydride reduction of ketones or diphenylphosphinyl aldimines. The stereochemical course in these enantioselective reductions is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...