Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 104(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37309998

RESUMO

Negeviruses that infect insects are recently identified virus species that are phylogenetically related to several plant viruses. They exhibit a unique virion structure, an elliptical core with a short projection. Negeviruses encode two structural proteins, a glycoprotein that forms a short projection, and an envelope protein that forms an elliptical core. The glycoprotein has been reported only in the negeviruses' genes, and not in phylogenetically related plant viruses' genes. In this report, we first describe the three-dimensional electron cryo-microscopy (cryo-EM) structure of Tanay virus (TANAV), one of the nege-like viruses. TANAV particle demonstrates a periodical envelope structure consisting of three layers surrounding the centred viral RNA. The elliptical core dynamically changes its shape under acidic and even low detergent conditions to form bullet-like or tubular shapes. The further cryo-EM studies on these transformed TANAV particles reveal their overall structural rearrangement. These findings suggest putative geometries of TANAV and its transformation in the life cycle, and the potential importance of the short projection for enabling cell entry to the insect hosts.


Assuntos
Vírion , Vírus , Microscopia Crioeletrônica , RNA Viral
2.
PLoS Pathog ; 19(2): e1011162, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36848381

RESUMO

Rosellinia necatrix megabirnavirus 1-W779 (RnMBV1) is a non-enveloped icosahedral double-stranded (ds)RNA virus that infects the ascomycete fungus Rosellinia necatrix, a causative agent that induces a lethal plant disease white root rot. Herein, we have first resolved the atomic structure of the RnMBV1 capsid at 3.2 Å resolution using cryo-electron microscopy (cryo-EM) single-particle analysis. Compared with other non-enveloped icosahedral dsRNA viruses, the RnMBV1 capsid protein structure exhibits an extra-long C-terminal arm and a surface protrusion domain. In addition, the previously unrecognized crown proteins are identified in a symmetry-expanded cryo-EM model and are present over the 3-fold axes. These exclusive structural features of the RnMBV1 capsid could have been acquired for playing essential roles in transmission and/or particle assembly of the megabirnaviruses. Our findings, therefore, will reinforce the understanding of how the structural and molecular machineries of the megabirnaviruses influence the virulence of the disease-related ascomycete fungus.


Assuntos
Proteínas do Capsídeo , Vírus de RNA , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Capsídeo/química , Microscopia Crioeletrônica , Vírus de RNA/genética , RNA de Cadeia Dupla/genética
3.
J Virol ; 96(9): e0029822, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35435722

RESUMO

Sapovirus (SaV) is a member of the Caliciviridae family, which causes acute gastroenteritis in humans and animals. Human sapoviruses (HuSaVs) are genetically and antigenically diverse, but the lack of a viral replication system and structural information has hampered the development of vaccines and therapeutics. Here, we successfully produced a self-assembled virus-like particle (VLP) from the HuSaV GI.6 VP1 protein, and the first atomic structure was determined using single-particle cryo-electron microscopy (cryo-EM) at a 2.9-Å resolution. The atomic model of the VP1 protein revealed a unique capsid protein conformation in caliciviruses. All N-terminal arms in the A, B, and C subunits interacted with adjacent shell domains after extending through their subunits. The roof of the arched VP1 dimer was formed between the P2 subdomains by the interconnected ß strands and loops, and its buried surface was minimized compared to those of other caliciviruses. Four hypervariable regions that are potentially involved in the antigenic diversity of SaV formed extensive clusters on top of the P domain. Potential receptor binding regions implied by tissue culture mutants of porcine SaV were also located near these hypervariable clusters. Conserved sequence motifs of the VP1 protein, "PPG" and "GWS," may stabilize the inner capsid shell and the outer protruding domain, respectively. These findings will provide the structural basis for the medical treatment of HuSaV infections and facilitate the development of vaccines, antivirals, and diagnostic systems. IMPORTANCE SaV and norovirus, belonging to the Caliciviridae family, are common causes of acute gastroenteritis in humans and animals. SaV and norovirus infections are public health problems in all age groups, which occur explosively and sporadically worldwide. HuSaV is genetically and antigenically diverse and is currently classified into 4 genogroups consisting of 18 genotypes based on the sequence similarity of the VP1 proteins. Despite these detailed genetic analyses, the lack of structural information on viral capsids has become a problem for the development of vaccines or antiviral drugs. The 2.9-Å atomic model of the HuSaV GI.6 VLP presented here not only revealed the location of the amino acid residues involved in immune responses and potential receptor binding sites but also provided essential information for the design of stable constructs needed for the development of vaccines and antivirals.


Assuntos
Proteínas do Capsídeo , Capsídeo , Sapovirus , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Conformação Proteica , Sapovirus/ultraestrutura , Suínos
4.
Curr Biol ; 32(10): 2291-2299.e3, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439432

RESUMO

Connectomics has become a standard neuroscience methodology in a few model animals,1 with the visual system being a popular target of study.2-5 Combining connectomics with circuit and behavioral physiology, recent studies on the color vision of the fruit fly Drosophila melanogaster have focused on the mechanisms underlying early wavelength processing in the optic ganglia.6-8 However, the color vision capabilities of D. melanogaster are limited,9 compared with many flower-visiting insects.10,11 For example, a butterfly Papilio xuthus has six spectral classes of photoreceptors. Each ommatidium contains nine photoreceptors in one of three fixed combinations, making the eye an array of three spectrally distinct ommatidia types.12 Behaviorally, P. xuthus can detect 1 nm differences in light wavelength across the spectrum from ultraviolet to red, outperforming humans.13 What is the neuronal basis of such precise color vision? How does such a system evolve? Addressing these questions requires comparative studies at the circuit level. Here, we performed a connectome analysis in the first optic ganglion, the lamina, of P. xuthus. The lamina comprises cartridges, each typically containing nine photoreceptor axons from a single ommatidium and four second-order neurons. We found abundant inter-photoreceptor connections, which are absent in the lamina of D. melanogaster. We also identified connections between neighboring cartridges, particularly those receiving inputs from spectrally distinct ommatidia. The linear summation of synaptic connections well explains the spectral sensitivity of photoreceptors and second-order neurons in the lamina.


Assuntos
Borboletas , Conectoma , Animais , Borboletas/fisiologia , Percepção de Cores/fisiologia , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/fisiologia
5.
Nat Commun ; 13(1): 1764, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365610

RESUMO

Fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs) function as light harvesters in diatoms. The structure of a diatom photosystem II-FCPII (PSII-FCPII) supercomplex have been solved by cryo-electron microscopy (cryo-EM) previously; however, the FCPII subunits that constitute the FCPII tetramers and monomers are not identified individually due to their low resolutions. Here, we report a 2.5 Å resolution structure of the PSII-FCPII supercomplex using cryo-EM. Two types of tetrameric FCPs, S-tetramer, and M-tetramer, are identified as different types of hetero-tetrameric complexes. In addition, three FCP monomers, m1, m2, and m3, are assigned to different gene products of FCP. The present structure also identifies the positions of most Chls c and diadinoxanthins, which form a complicated pigment network. Excitation-energy transfer from FCPII to PSII is revealed by time-resolved fluorescence spectroscopy. These structural and spectroscopic findings provide insights into an assembly model of FCPII and its excitation-energy transfer and quenching processes.


Assuntos
Diatomáceas , Complexo de Proteína do Fotossistema II , Proteínas de Ligação à Clorofila/química , Microscopia Crioeletrônica , Diatomáceas/metabolismo , Transferência de Energia , Complexo de Proteína do Fotossistema II/metabolismo
6.
Nat Commun ; 13(1): 1679, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354806

RESUMO

Photosystem I (PSI) is one of the two photosystems functioning in light-energy harvesting, transfer, and electron transfer in photosynthesis. However, the oligomerization state of PSI is variable among photosynthetic organisms. We present a 3.8-Å resolution cryo-electron microscopic structure of tetrameric PSI isolated from the glaucophyte alga Cyanophora paradoxa, which reveals differences with PSI from other organisms in subunit composition and organization. The PSI tetramer is organized in a dimer of dimers with a C2 symmetry. Unlike cyanobacterial PSI tetramers, two of the four monomers are rotated around 90°, resulting in a completely different pattern of monomer-monomer interactions. Excitation-energy transfer among chlorophylls differs significantly between Cyanophora and cyanobacterial PSI tetramers. These structural and spectroscopic features reveal characteristic interactions and excitation-energy transfer in the Cyanophora PSI tetramer, suggesting that the Cyanophora PSI could represent a turning point in the evolution of PSI from prokaryotes to eukaryotes.


Assuntos
Cianobactérias , Cyanophora , Clorofila , Cianobactérias/metabolismo , Cyanophora/metabolismo , Transferência de Energia , Complexo de Proteína do Fotossistema I/metabolismo
7.
J Struct Biol ; 214(2): 107842, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181457

RESUMO

In bifidobacteria, phosphoketolase (PKT) plays a key role in the central hexose fermentation pathway called "bifid shunt." The three-dimensional structure of PKT from Bifidobacterium longum with co-enzyme thiamine diphosphate (ThDpp) was determined at 2.1 Å resolution by cryo-EM single-particle analysis using 196,147 particles to build up the structural model of a PKT octamer related by D4 symmetry. Although the cryo-EM structure of PKT was almost identical to the X-ray crystal structure previously determined at 2.2 Å resolution, several interesting structural features were observed in the cryo-EM structure. Because this structure was solved at relatively high resolution, it was observed that several amino acid residues adopt multiple conformations. Among them, Q546-D547-H548-N549 (the QN-loop) demonstrate the largest structural change, which seems to be related to the enzymatic function of PKT. The QN-loop is at the entrance to the substrate binding pocket. The minor conformer of the QN-loop is similar to the conformation of the QN-loop in the crystal structure. The major conformer is located further from ThDpp than the minor conformer. Interestingly, the major conformer in the cryo-EM structure of PKT resembles the corresponding loop structure of substrate-bound Escherichia coli transketolase. That is, the minor and major conformers may correspond to "closed" and "open" states for substrate access, respectively. Moreover, because of the high-resolution analysis, many water molecules were observed in the cryo-EM structure of PKT. Structural features of the water molecules in the cryo-EM structure are discussed and compared with water molecules observed in the crystal structure.


Assuntos
Aldeído Liases/química , Bifidobacterium longum/enzimologia , Microscopia Crioeletrônica/métodos , Escherichia coli , Modelos Moleculares , Tiamina Pirofosfato , Água
8.
Structure ; 30(2): 300-312.e3, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34597601

RESUMO

The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.


Assuntos
Bacteriófagos/química , Proteínas do Capsídeo/química , Capsídeo/química , Helicobacter pylori/virologia , Microscopia Crioeletrônica , DNA Viral/química , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Imagem Individual de Molécula
9.
Nat Commun ; 12(1): 4012, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188035

RESUMO

Recognition of laminin by integrin receptors is central to the epithelial cell adhesion to basement membrane, but the structural background of this molecular interaction remained elusive. Here, we report the structures of the prototypic laminin receptor α6ß1 integrin alone and in complex with three-chain laminin-511 fragment determined via crystallography and cryo-electron microscopy, respectively. The laminin-integrin interface is made up of several binding sites located on all five subunits, with the laminin γ1 chain C-terminal portion providing focal interaction using two carboxylate anchor points to bridge metal-ion dependent adhesion site of integrin ß1 subunit and Asn189 of integrin α6 subunit. Laminin α5 chain also contributes to the affinity and specificity by making electrostatic interactions with large surface on the ß-propeller domain of α6, part of which comprises an alternatively spliced X1 region. The propeller sheet corresponding to this region shows unusually high mobility, suggesting its unique role in ligand capture.


Assuntos
Células Epiteliais/metabolismo , Integrina alfa6/metabolismo , Integrina alfa6beta1/metabolismo , Integrina beta1/metabolismo , Laminina/metabolismo , Sequência de Aminoácidos , Membrana Basal/metabolismo , Sítios de Ligação/fisiologia , Adesão Celular/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Conformação Proteica , Domínios Proteicos/fisiologia , Eletricidade Estática
10.
Commun Biol ; 4(1): 382, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753866

RESUMO

Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.


Assuntos
Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Elétrons/efeitos adversos , Complexo de Proteína do Fotossistema II/ultraestrutura , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Thermosynechococcus/metabolismo , Thermosynechococcus/ultraestrutura
11.
Front Microbiol ; 11: 562395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304323

RESUMO

A recent study proposed the novel classification of the family Mycobacteriaceae based on the genome analysis of core proteins in 150 Mycobacterium species. The results from these analyses supported the existence of five distinct monophyletic groups within the genus Mycobacterium. That is, Mycobacterium has been divided into two novel genera for rapid grower Mycobacteroides and Mycolicibacterium, and into three genera for slow grower Mycolicibacter, Mycolicibacillus, and an emended genus Mycobacterium, which include all the major human pathogens. Here, cryo-TEM examinations of 1,816 cells of 31 species (34 strains) belonging to the five novel genera were performed. The fundamental morphological properties of every single cell, such as cell diameter, cell length, cell perimeter, cell circularity, and aspect ratio were measured and compared between these genera. In 50 comparisons on the five parameters between any two genera, only five comparisons showed "non-significant" differences. That is, there are non-significant differences between slow grower genus Mycolicibacillus and genus Mycobacterium in average cell diameter (p = 0.15), between rapid grower genus Mycobacteroides and slow grower genus Mycobacterium in average cell length (p > 0.24), between genus Mycobacteroides and genus Mycobacterium (p > 0.68) and between genus Mycolicibacter and genus Mycolicibacillus (p > 0.11) in average cell perimeter, and between genus Mycolicibacterium and genus Mycobacterium in circularity (p > 0.73). The other 45 comparisons showed significant differences between the genera. Genus Mycobacteroides showed the longest average cell diameter, whereas the genus Mycolicibacter showed the shortest average diameter. Genus Mycolicibacterium showed the most extended average cell length, perimeter, and aspect ratio, whereas the genus Mycolicibacillus showed the shortest average cell length, perimeter, and aspect ratio. Genus Mycolicibacillus showed the highest average cell circularity, whereas genus Mycobacterium showed the lowest average cell circularity. These fundamental morphological data strongly support the new classification in the family Mycobacteriaceae, and this classification is rational and effective in the study of the members of the family Mycobacteriaceae. Because both the genus Mycolicibacterium and the genus Mycobacterium contain many species and showed larger significant standard deviations in every parameter, these genera may be divided into novel genera which show common genotype and phenotypes in morphology and pathogenicity.

12.
BMC Biol ; 18(1): 152, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115459

RESUMO

BACKGROUND: DNA polymerase D (PolD) is the representative member of the D family of DNA polymerases. It is an archaea-specific DNA polymerase required for replication and unrelated to other known DNA polymerases. PolD consists of a heterodimer of two subunits, DP1 and DP2, which contain catalytic sites for 3'-5' editing exonuclease and DNA polymerase activities, respectively, with both proteins being mutually required for the full activities of each enzyme. However, the processivity of the replicase holoenzyme has additionally been shown to be enhanced by the clamp molecule proliferating cell nuclear antigen (PCNA), making it crucial to elucidate the interaction between PolD and PCNA on a structural level for a full understanding of its functional relevance. We present here the 3D structure of a PolD-PCNA-DNA complex from Thermococcus kodakarensis using single-particle cryo-electron microscopy (EM). RESULTS: Two distinct forms of the PolD-PCNA-DNA complex were identified by 3D classification analysis. Fitting the reported crystal structures of truncated forms of DP1 and DP2 from Pyrococcus abyssi onto our EM map showed the 3D atomic structural model of PolD-PCNA-DNA. In addition to the canonical interaction between PCNA and PolD via PIP (PCNA-interacting protein)-box motif, we found a new contact point consisting of a glutamate residue at position 171 in a ß-hairpin of PCNA, which mediates interactions with DP1 and DP2. The DNA synthesis activity of a mutant PolD with disruption of the E171-mediated PCNA interaction was not stimulated by PCNA in vitro. CONCLUSIONS: Based on our analyses, we propose that glutamate residues at position 171 in each subunit of the PCNA homotrimer ring can function as hooks to lock PolD conformation on PCNA for conversion of its activity. This hook function of the clamp molecule may be conserved in the three domains of life.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , DNA Polimerase Dirigida por DNA/química , Conformação de Ácido Nucleico , Thermococcus/genética , Microscopia Crioeletrônica , Pyrococcus abyssi/genética , Thermococcus/enzimologia
13.
PLoS Pathog ; 16(7): e1008619, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614892

RESUMO

Norovirus is the major cause of epidemic nonbacterial gastroenteritis worldwide. Lack of structural information on infection and replication mechanisms hampers the development of effective vaccines and remedies. Here, using cryo-electron microscopy, we show that the capsid structure of murine noroviruses changes in response to aqueous conditions. By twisting the flexible hinge connecting two domains, the protruding (P) domain reversibly rises off the shell (S) domain in solutions of higher pH, but rests on the S domain in solutions of lower pH. Metal ions help to stabilize the resting conformation in this process. Furthermore, in the resting conformation, the cellular receptor CD300lf is readily accessible, and thus infection efficiency is significantly enhanced. Two similar P domain conformations were also found simultaneously in the human norovirus GII.3 capsid, although the mechanism of the conformational change is not yet clear. These results provide new insights into the mechanisms of non-enveloped norovirus transmission that invades host cells, replicates, and sometimes escapes the hosts immune system, through dramatic environmental changes in the gastrointestinal tract.


Assuntos
Proteínas do Capsídeo/química , Norovirus/química , Domínios Proteicos , Animais , Linhagem Celular , Humanos , Camundongos
14.
Structure ; 28(8): 888-896.e3, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413288

RESUMO

Non-enveloped icosahedral double-stranded RNA (dsRNA) viruses possess multifunctional capsids required for their proliferation. Whereas protozoan/fungal dsRNA viruses have a relatively simple capsid structure, which suffices for the intracellular phase in their life cycle, metazoan dsRNA viruses have acquired additional structural features as an adaptation for extracellular cell-to-cell transmission in multicellular hosts. Here, we present the first atomic model of a metazoan dsRNA totivirus-like virus and the structure reveals three unique structural traits: a C-terminal interlocking arm, surface projecting loops, and an obstruction at the pore on the 5-fold symmetry axis. These traits are keys to understanding the capsid functions of metazoan dsRNA viruses, such as particle stability and formation, cell entry, and endogenous intraparticle transcription of mRNA. On the basis of molecular dynamics simulations of the obstructed pore, we propose a possible mechanism of intraparticle transcription in totivirus-like viruses, which dynamically switches between open and closed states of the pore(s).


Assuntos
Capsídeo/química , RNA de Cadeia Dupla/química , RNA Viral/química , Totivirus/química , Capsídeo/metabolismo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , RNA de Cadeia Dupla/genética , RNA Viral/genética , Totivirus/fisiologia , Internalização do Vírus , Replicação Viral
15.
Nat Commun ; 11(1): 2481, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424145

RESUMO

Photosynthetic light-harvesting complexes (LHCs) play a pivotal role in collecting solar energy for photochemical reactions in photosynthesis. One of the major LHCs are fucoxanthin chlorophyll a/c-binding proteins (FCPs) present in diatoms, a group of organisms having important contribution to the global carbon cycle. Here, we report a 2.40-Å resolution structure of the diatom photosystem I (PSI)-FCPI supercomplex by cryo-electron microscopy. The supercomplex is composed of 16 different FCPI subunits surrounding a monomeric PSI core. Each FCPI subunit showed different protein structures with different pigment contents and binding sites, and they form a complicated pigment-protein network together with the PSI core to harvest and transfer the light energy efficiently. In addition, two unique, previously unidentified subunits were found in the PSI core. The structure provides numerous insights into not only the light-harvesting strategy in diatom PSI-FCPI but also evolutionary dynamics of light harvesters among oxyphototrophs.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/química , Proteínas de Ligação à Clorofila/ultraestrutura , Transferência de Energia , Complexos de Proteínas Captadores de Luz/ultraestrutura , Modelos Moleculares , Complexo de Proteína do Fotossistema I/ultraestrutura , Ligação Proteica , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
16.
Commun Biol ; 3(1): 232, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393811

RESUMO

Iron-stress induced protein A (IsiA) is a chlorophyll-binding membrane-spanning protein in photosynthetic prokaryote cyanobacteria, and is associated with photosystem I (PSI) trimer cores, but its structural and functional significance in light harvesting remains unclear. Here we report a 2.7-Å resolution cryo-electron microscopic structure of a supercomplex between PSI core trimer and IsiA from a thermophilic cyanobacterium Thermosynechococcus vulcanus. The structure showed that 18 IsiA subunits form a closed ring surrounding a PSI trimer core. Detailed arrangement of pigments within the supercomplex, as well as molecular interactions between PSI and IsiA and among IsiAs, were resolved. Time-resolved fluorescence spectra of the PSI-IsiA supercomplex showed clear excitation-energy transfer from IsiA to PSI, strongly indicating that IsiA functions as an energy donor, but not an energy quencher, in the supercomplex. These structural and spectroscopic findings provide important insights into the excitation-energy-transfer and subunit assembly mechanisms in the PSI-IsiA supercomplex.


Assuntos
Proteínas de Bactérias/genética , Complexos de Proteínas Captadores de Luz/genética , Complexo de Proteína do Fotossistema I/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Thermosynechococcus/genética , Thermosynechococcus/metabolismo
17.
Curr Biol ; 30(5): 815-826.e5, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32004452

RESUMO

Compared to our understanding of the response properties of receptors in the auditory and visual systems, we have only a limited understanding of the mechanoreceptor responses that underlie tactile sensation. Here, we exploit the stereotyped morphology of the rat vibrissal (whisker) array to investigate coding and transduction properties of identified primary tactile afferents. We performed in vivo intra-axonal recording and labeling experiments to quantify response characteristics of four different types of identified mechanoreceptors in the vibrissal follicle: ring-sinus Merkel; lanceolate; clublike; and rete-ridge collar Merkel. Of these types, only ring-sinus Merkel endings exhibited slowly adapting properties. A weak inverse relationship between response magnitude and onset response latency was found across all types. All afferents exhibited strong "angular tuning," i.e., their response magnitude and latency depended on the whisker's deflection angle. Although previous studies suggested that this tuning should be aligned with the angular location of the mechanoreceptor in the follicle, such alignment was observed only for Merkel afferents; angular tuning of the other afferent types showed no clear alignment with mechanoreceptor location. Biomechanical modeling suggested that this tuning difference might be explained by mechanoreceptors' differential sensitivity to the force directed along the whisker length. Electron microscopic investigations of Merkel endings and lanceolate endings at the level of the ring sinus revealed unique anatomical features that may promote these differential sensitivities. The present study systematically integrates biomechanical principles with the anatomical and morphological characterization of primary afferent endings to describe the physical and cellular processing that shapes the neural representation of touch.


Assuntos
Axônios/fisiologia , Mecanorreceptores/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais , Fenômenos Biomecânicos , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
18.
Nat Commun ; 11(1): 238, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932639

RESUMO

Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f.


Assuntos
Clorofila/análogos & derivados , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Sítios de Ligação , Clorofila/metabolismo , Clorofila/efeitos da radiação , Clorofila A/metabolismo , Clorofila A/efeitos da radiação , Microscopia Crioeletrônica , Cianobactérias/química , Cianobactérias/fisiologia , Transferência de Energia , Luz , Modelos Moleculares , Complexo de Proteína do Fotossistema I/efeitos da radiação , Conformação Proteica
19.
Nat Commun ; 10(1): 4929, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666526

RESUMO

Photosystem I (PSI) functions to harvest light energy for conversion into chemical energy. The organisation of PSI is variable depending on the species of organism. Here we report the structure of a tetrameric PSI core isolated from a cyanobacterium, Anabaena sp. PCC 7120, analysed by single-particle cryo-electron microscopy (cryo-EM) at 3.3 Å resolution. The PSI tetramer has a C2 symmetry and is organised in a dimer of dimers form. The structure reveals interactions at the dimer-dimer interface and the existence of characteristic pigment orientations and inter-pigment distances within the dimer units that are important for unique excitation energy transfer. In particular, characteristic residues of PsaL are identified to be responsible for the formation of the tetramer. Time-resolved fluorescence analyses showed that the PSI tetramer has an enhanced excitation-energy quenching. These structural and spectroscopic findings provide insights into the physiological significance of the PSI tetramer and evolutionary changes of the PSI organisations.


Assuntos
Anabaena/metabolismo , Complexo de Proteína do Fotossistema I/ultraestrutura , Microscopia Crioeletrônica , Estrutura Quaternária de Proteína , Imagem Individual de Molécula , Espectrometria de Fluorescência
20.
Nat Commun ; 10(1): 4763, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628328

RESUMO

Phagocytosis is a cellular process for internalization of micron-sized large particles including pathogens. The Bin-Amphiphysin-Rvs167 (BAR) domain proteins, including the FCH-BAR (F-BAR) domain proteins, impose specific morphologies on lipid membranes. Most BAR domain proteins are thought to form membrane invaginations or protrusions by assembling into helical submicron-diameter filaments, such as on clathrin-coated pits, caveolae, and filopodia. However, the mechanism by which BAR domain proteins assemble into micron-scale phagocytic cups was unclear. Here, we show that the two-dimensional sheet-like assembly of Growth Arrest-Specific 7 (GAS7) plays a critical role in phagocytic cup formation in macrophages. GAS7 has the F-BAR domain that possesses unique hydrophilic loops for two-dimensional sheet formation on flat membranes. Super-resolution microscopy reveals the similar assemblies of GAS7 on phagocytic cups and liposomes. The mutations of the loops abolishes both the membrane localization of GAS7 and phagocytosis. Thus, the sheet-like assembly of GAS7 plays a significant role in phagocytosis.


Assuntos
Macrófagos/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fagocitose , Sequência de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células HeLa , Humanos , Lipídeos de Membrana/química , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células RAW 264.7 , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA