Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomed Opt Express ; 13(7): 4071-4086, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991915

RESUMO

Label-free metabolic imaging of non-alcoholic fatty liver disease (NAFLD) mouse liver is demonstrated ex vivo by dynamic optical coherence tomography (OCT). The NAFLD mouse is a methionine choline-deficient (MCD)-diet model, and two mice fed the MCD diet for 1 and 2 weeks are involved in addition to a normal-diet mouse. The dynamic OCT is based on repeating raster scan and logarithmic intensity variance (LIV) analysis that enables volumetric metabolic imaging with a standard-speed (50,000 A-lines/s) OCT system. Metabolic domains associated with lipid droplet accumulation and inflammation are clearly visualized three-dimensionally. Particularly, the normal-diet liver exhibits highly metabolic vessel-like structures of peri-vascular hepatic zones. The 1-week MCD-diet liver shows ring-shaped highly metabolic structures formed with lipid droplets. The 2-week MCD-diet liver exhibits fragmented vessel-like structures associated with inflammation. These results imply that volumetric LIV imaging is useful for visualizing and assessing NAFLD abnormalities.

4.
Biomed Opt Express ; 13(5): 2975-2994, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35774308

RESUMO

Here we demonstrate a long-depth-of-focus imaging method using polarization sensitive optical coherence tomography (PS-OCT). This method involves a combination of Fresnel-diffraction-model-based phase sensitive computational refocusing and Jones-matrix based PS-OCT (JM-OCT). JM-OCT measures four complex OCT images corresponding to four polarization channels. These OCT images are computationally refocused as preserving the mutual phase consistency. This method is validated using a static phantom, postmortem zebrafish, and ex vivo porcine muscle samples. All the samples demonstrated successful computationally-refocused birefringence and degree-of-polarization-uniformity (DOPU) images. We found that defocusing induces polarization artifacts, i.e., incorrectly high birefringence values and low DOPU values, which are substantially mitigated by computational refocusing.

5.
Biomed Opt Express ; 13(1): 168-183, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154862

RESUMO

We present deep convolutional neural network (DCNN)-based estimators of the tissue scatterer density (SD), lateral and axial resolutions, signal-to-noise ratio (SNR), and effective number of scatterers (ENS, the number of scatterers within a resolution volume). The estimators analyze the speckle pattern of an optical coherence tomography (OCT) image in estimating these parameters. The DCNN is trained by a large number (1,280,000) of image patches that are fully numerically generated in OCT imaging simulation. Numerical and experimental validations were performed. The numerical validation shows good estimation accuracy as the root mean square errors were 0.23%, 3.65%, 3.58%, 3.79%, and 6.15% for SD, lateral and axial resolutions, SNR, and ENS, respectively. The experimental validation using scattering phantoms (Intralipid emulsion) shows reasonable estimations. Namely, the estimated SDs were proportional to the Intralipid concentrations, and the average estimation errors of lateral and axial resolutions were 1.36% and 0.68%, respectively. The scatterer density estimator was also applied to an in vitro tumor cell spheroid, and a reduction in the scatterer density during cell necrosis was found.

6.
Biomed Opt Express ; 12(11): 6844-6863, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858684

RESUMO

We present a completely label-free three-dimensional (3D) optical coherence tomography (OCT)-based tissue dynamics imaging method for visualization and quantification of the metabolic and necrotic activities of tumor spheroid. Our method is based on a custom 3D scanning protocol that is designed to capture volumetric tissue dynamics tomography images only in a few tens of seconds. The method was applied to the evaluation of a tumor spheroid. The time-course viability alteration and anti-cancer drug response of the spheroid were visualized qualitatively and analyzed quantitatively. The similarity between the OCT-based dynamics images and fluorescence microscope images was also demonstrated.

7.
Sci Rep ; 11(1): 20054, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625574

RESUMO

We demonstrate label-free imaging of the functional and structural properties of microvascular complex in mice liver. The imaging was performed by a custom-built Jones-matrix based polarization sensitive optical coherence tomography (JM-OCT), which is capable of measuring tissue's attenuation coefficient, birefringence, and tiny tissue dynamics. Two longitudinal studies comprising a healthy liver and an early fibrotic liver model were performed. In the healthy liver, we observed distinctive high dynamics beneath the vessel at the initial time point (0 h) and reappearance of high dynamics at 32-h time point. In the early fibrotic liver model, we observed high dynamics signal that reveals a clear network vascular structure by volume rendering. Longitudinal time-course imaging showed that these high dynamics signals faded and decreased over time.


Assuntos
Cirrose Hepática/patologia , Fígado/irrigação sanguínea , Tomografia de Coerência Óptica/métodos , Animais , Fígado/diagnóstico por imagem , Cirrose Hepática/diagnóstico por imagem , Camundongos
8.
Skin Res Technol ; 27(3): 435-443, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33111404

RESUMO

BACKGROUND: Multi-contrast Jones matrix optical coherence tomography (JM-OCT) can provide quantitative depth-resolved local optical properties by improving the measurement algorithm. MATERIALS AND METHODS: We examined the relationship between depth-resolved local optical properties of eye-corner skin measured by JM-OCT and corresponding wrinkle morphology of aged women (n = 21; age range, 71.7 ± 1.7 years). Wrinkle morphology was analyzed by measuring the surface topography of three-dimensional replicas. The same regions were measured three-dimensionally by JM-OCT, and the local optical properties at each depth were computed. RESULTS: Birefringence (BR) and mean wrinkle depth correlated significantly at a depth of 88.2-138.6 µm from the skin surface, and attenuation coefficient (AC) and mean wrinkle depth correlated significantly at a depth of 12.6-18.9 µm and 189-459.9 µm from the skin surface, although a degree of polarization uniformity (DOPU) did not. Stepwise multiple regression analysis demonstrated that a significant regression equation (R2  = 0.649, P < .001) for predicting mean wrinkle depth was determined by BR at 107.1 µm depth (BR 107.1 µm ), DOPU at 170.1 µm (DOPU 170.1µm ), and AC at 252 µm (AC 252 µm ) as independent variables and that these standardized beta regression coefficients were -0.860, -0.593, and -0.440, respectively, suggesting that BR, DOPU, and AC sufficiently explained mean wrinkle depth. CONCLUSION: These results suggest that BR 107.1 µm , DOPU 170.1 µm, and AC 252 µm may indicate collagen-related structure in the papillary, upper-reticular dermis, and microstructure or tissue density in reticular dermis, respectively, and may be involved in wrinkle formation.


Assuntos
Envelhecimento da Pele , Tomografia de Coerência Óptica , Idoso , Algoritmos , Humanos , Pele/diagnóstico por imagem
9.
Biomed Opt Express ; 11(11): 6231-6248, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282486

RESUMO

We present optical coherence tomography (OCT)-based tissue dynamics imaging method to visualize and quantify tissue dynamics such as subcellular motion based on statistical analysis of rapid-time-sequence OCT signals at the same location. The analyses include logarithmic intensity variance (LIV) method and two types of OCT correlation decay speed analysis (OCDS). LIV is sensitive to the magnitude of the signal fluctuations, while OCDSs including early- and late-OCDS (OCDS e and OCDS l , respectively) are sensitive to the fast and slow tissue dynamics, respectively. These methods were able to visualize and quantify the longitudinal necrotic process of a human breast adenocarcinoma spheroid and its anti-cancer drug response. Additionally, the effects of the number of OCT signals and the total acquisition time on dynamics imaging are examined. Small number of OCT signals, e.g., five or nine suffice for dynamics imaging when the total acquisition time is suitably long.

10.
Biomed Opt Express ; 10(10): 5162-5181, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646039

RESUMO

Polarization-sensitive optical coherence elastography (PS-OCE) is developed for improved tissue discrimination. It integrates Jones matrix-based PS-optical coherence tomography (PS-OCT) with compression OCE. The method simultaneously measures the OCT intensity, attenuation coefficient, birefringence, and microstructural deformation (MSD) induced by tissue compression. Ex vivo porcine aorta and esophagus tissues were investigated by PS-OCE and histological imaging. The tissue properties measured by PS-OCE are shown as cross-sectional images and a three-dimensional (3-D) depth-trajectory plot. In this trajectory plot, the average attenuation coefficient, birefringence, and MSD were computed at each depth, and the trajectory in the depth direction was plotted in a 3-D feature space of these three properties. The tissue boundaries in a histological image corresponded with the depth-trajectory inflection points. Histogram analysis and t-distributed stochastic neighbour embedding (t-SNE) visualization of the three tissue properties indicated that the PS-OCE measurements provide sufficient information to discriminate porcine esophagus tissues.

11.
Opt Lett ; 44(4): 787-790, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767987

RESUMO

Current compression-based optical coherence elastography (OCE) only measures the axial displacement of a tissue, although the tissue also undergoes lateral displacement and microstructural alteration by the compression. In this Letter, we demonstrate a new compression-based OCE method that visualizes not only axial displacement, but also lateral displacement and microstructural decorrelation (MSD). This method employs complex correlation-based displacement and MSD measurements. It is implemented in a swept-source optical coherence tomography system with an active submicrometer compression. The performance of the method was demonstrated by measuring the porcine carotid artery and esophagus. The results showed significant axial and lateral displacements in the tissues by compression. An MSD map demonstrates high-contrast mechanical-property imaging.

12.
Biomed Opt Express ; 9(7): 2955-2973, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29984078

RESUMO

Tissue segmentation of retinal optical coherence tomography (OCT) is widely used in ophthalmic diagnosis. However, its performance in severe pathologic cases is still insufficient. We propose a pixel-wise segmentation method that uses the multi-contrast measurement capability of Jones matrix OCT (JM-OCT). This method is applicable to both normal and pathologic retinal pigment epithelium (RPE) and choroidal stroma. In this method, "features," which are sensitive to specific tissues of interest, are synthesized by combining the multi-contrast images of JM-OCT, including attenuation coefficient, degree-of-polarization-uniformity, and OCT angiography. The tissue segmentation is done by simple thresholding of the feature. Compared with conventional segmentation methods for pathologic maculae, the proposed method is less computationally intensive. The segmentation method was validated by applying it to images from normal and severely pathologic cases. The segmentation results enabled the development of several types of en face visualizations, including melano-layer thickness maps, RPE elevation maps, choroidal thickness maps, and choroidal stromal attenuation coefficient maps. These facilitate close examination of macular pathology. The melano-layer thickness map is very similar to a near infrared fundus autofluorescence image, so the map can be used to identify the source of a hyper-autofluorescent signal.

13.
Biomed Opt Express ; 8(10): 4396-4418, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082073

RESUMO

Jones matrix-based polarization sensitive optical coherence tomography (JM-OCT) simultaneously measures optical intensity, birefringence, degree of polarization uniformity, and OCT angiography. The statistics of the optical features in a local region, such as the local mean of the OCT intensity, are frequently used for image processing and the quantitative analysis of JM-OCT. Conventionally, local statistics have been computed with fixed-size rectangular kernels. However, this results in a trade-off between image sharpness and statistical accuracy. We introduce a superpixel method to JM-OCT for generating the flexible kernels of local statistics. A superpixel is a cluster of image pixels that is formed by the pixels' spatial and signal value proximities. An algorithm for superpixel generation specialized for JM-OCT and its optimization methods are presented in this paper. The spatial proximity is in two-dimensional cross-sectional space and the signal values are the four optical features. Hence, the superpixel method is a six-dimensional clustering technique for JM-OCT pixels. The performance of the JM-OCT superpixels and its optimization methods are evaluated in detail using JM-OCT datasets of posterior eyes. The superpixels were found to well preserve tissue structures, such as layer structures, sclera, vessels, and retinal pigment epithelium. And hence, they are more suitable for local statistics kernels than conventional uniform rectangular kernels.

14.
Opt Express ; 17(20): 17426-40, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19907527

RESUMO

We developed a tissue discrimination algorithm of polarization sensitive optical coherence tomography (PS-OCT) based on the optical properties of tissues. We calculated the three-dimensional (3D) feature vector from the parameters intensity, extinction coefficient, birefringence, which were obtained by PS-OCT. The tissue type of each pixel was determined according to the position of the feature vector in the 3D feature space. The algorithm was applied for discriminating tissues of the human anterior eye segment. The conjunctiva, sclera, trabecular meshwork (TM), cornea, and uvea were well separated in the 3D feature space, and we observed them with good contrast. The TM line can be observed in the 3D discriminated volume, as observed by gonioscopy.We validated our method by applying our algorithm and histological data to porcine eyes. A marker was injected into sub-Tenon's space and the tissues that were anterior to the marker and posterior to the marker were successfully segmented by our algorithm.


Assuntos
Algoritmos , Segmento Anterior do Olho/citologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Polarização/métodos , Oftalmoscopia/métodos , Tomografia de Coerência Óptica/métodos , Animais , Suínos
15.
J Biomed Opt ; 14(4): 044032, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19725743

RESUMO

The dermal degeneration accompanying photoaging is considered to promote skin roughness features such as wrinkles. Our previous study demonstrated that polarization-sensitive spectral domain optical coherence tomography (PS-SD-OCT) enabled noninvasive three-dimensional evaluation of the dermal degeneration of photoaged skin as a change in dermal birefringence, mainly due to collagenous structures. Our purpose is to examine the relationship between dermal birefringence and elasticity and the skin morphology in the eye corner area using PS-SD-OCT. Nineteen healthy male subjects in their seventees were recruited as subjects. A transverse dermal birefringence map, automatically produced by the algorithm, did not show localized changes in the dermal birefringence in the part of the main horizontal wrinkle. The averaged upper dermal birefringence, however, showed depth-dependent correlation with the parameters of skin roughness significantly, suggesting that solar elastosis is a major factor for the progress of wrinkles. Age-dependent parameters of skin elasticity measured with Cutometer did not correlate with the parameters. These results suggest that the analysis of dermal birefringence using PS-SD-OCT enables the evaluation of photoaging-dependent upper dermal degeneration related to the change of skin roughness.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Polarização/métodos , Refratometria/métodos , Envelhecimento da Pele/patologia , Envelhecimento da Pele/fisiologia , Tomografia de Coerência Óptica/métodos , Idoso , Humanos , Masculino , Propriedades de Superfície
16.
J Invest Dermatol ; 128(7): 1641-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18256690

RESUMO

Polarization-sensitive optical coherence tomography (PS-OCT) permits non-invasive visualization of dermal birefringence, mainly due to collagenous structures. The purpose of this study is to use PS-OCT to assess intrinsic-age-related and photo-age-related differences in three-dimensional dermal birefringence. We measured dermal birefringence of the cheek skin and photo-protected interior upper arm skin from old and young volunteers. The algorithm that we used automatically produces the transversal dermal birefringence map from the polarization-sensitive OCT volume. This allowed quantitative comparison and visualization of the transverse distribution of the dermal birefringence. We found that dermal birefringence of the cheek skin was significantly smaller in the old group than in the young group (young group, 0.295+/-0.037 degrees microm(-1); old group, 0.207+/-0.03 degrees microm(-1); P=0.003), whereas the interior upper arm showed no age-dependent difference. The transversal map of the cheek showed a heterogeneous decrease in dermal birefringence due to photoaging. The maps suggested that the peripheral regions of some infundibula were surrounded by a strong collagen network. Three-dimensional analyses of dermal birefringence using PS-OCT help to quantify the diagnosis of photoaging.


Assuntos
Birrefringência , Colágeno/química , Envelhecimento da Pele , Adulto , Fatores Etários , Idoso , Dermatoses Faciais/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Luz Solar/efeitos adversos , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...