Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(6): e0051123, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37975677

RESUMO

IMPORTANCE: Toxoplasma gondii (Tg) is a ubiquitous parasitic pathogen, infecting about one-third of the global population. Tg is controlled in immunocompetent people by mechanisms that are not fully understood. Tg infection drives the production of the inflammatory cytokine interferon gamma (IFNγ), which upregulates intracellular anti-pathogen defense pathways. In this study, we describe host proteins p97/VCP, UBXD1, and ANKRD13A that control Tg at the parasitophorous vacuole (PV) in IFNγ-stimulated endothelial cells. p97/VCP is an ATPase that interacts with a network of cofactors and is active in a wide range of ubiquitin-dependent cellular processes. We demonstrate that PV ubiquitination is a pre-requisite for recruitment of these host defense proteins, and their deposition directs Tg PVs to acidification in endothelial cells. We show that p97/VCP universally targets PVs in human cells and restricts Tg in different human cell types. Overall, these findings reveal new players of intracellular host defense of a vacuolated pathogen.


Assuntos
Parasitos , Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Interferons/metabolismo , Vacúolos/metabolismo , Células Endoteliais , Interferon gama , Proteína com Valosina/metabolismo
2.
J Am Soc Mass Spectrom ; 33(7): 1168-1175, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675480

RESUMO

Liquid extraction surface analysis (LESA) coupled to native mass spectrometry (MS) presents unique analytical opportunities due to its sensitivity, speed, and automation. Here, we examine whether this tool can be used to quantitatively probe protein-ligand interactions through calculation of equilibrium dissociation constants (Kd values). We performed native LESA MS analyses for a well-characterized system comprising bovine carbonic anhydrase II and the ligands chlorothiazide, dansylamide, and sulfanilamide, and compared the results with those obtained from direct infusion mass spectrometry and surface plasmon resonance measurements. Two LESA approaches were considered: In one approach, the protein and ligand were premixed in solution before being deposited and dried onto a solid substrate for LESA sampling, and in the second, the protein alone was dried onto the substrate and the ligand was included in the LESA sampling solvent. Good agreement was found between the Kd values derived from direct infusion MS and LESA MS when the protein and ligand were premixed; however, Kd values determined from LESA MS measurements where the ligand was in the sampling solvent were inconsistent. Our results suggest that LESA MS is a suitable tool for quantitative analysis of protein-ligand interactions when the dried sample comprises both protein and ligand.


Assuntos
Inibidores da Anidrase Carbônica , Extração Líquido-Líquido , Animais , Inibidores da Anidrase Carbônica/análise , Bovinos , Ligantes , Extração Líquido-Líquido/métodos , Espectrometria de Massas/métodos , Proteínas/química , Solventes
3.
Thromb Haemost ; 122(8): 1361-1368, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35170009

RESUMO

BACKGROUND: CLEC-2 is a platelet receptor with an important role in thromboinflammation but a minor role in hemostasis. Two endogenous ligands of CLEC-2 have been identified, the transmembrane protein podoplanin and iron-containing porphyrin hemin, which is formed following hemolysis from red blood cells. Other exogenous ligands such as rhodocytin have contributed to our understanding of the role of CLEC-2. OBJECTIVES: To identify novel CLEC-2 small-molecule ligands to aid therapeutic targeting of CLEC-2. METHODS: ALPHA screen technology has been used for the development of a high-throughput screening (HTS) assay recapitulating the podoplanin-CLEC-2 interaction. Light transmission aggregometry was used to evaluate platelet aggregation. Immunoprecipitation and western blot were used to evaluate direct phosphorylation of CLEC-2 and downstream protein phosphorylation. Autodock vina software was used to predict the molecular binding site of katacine and mass spectrometry to determine the polymeric nature of the ligand. RESULTS AND CONCLUSION: We developed a CLEC-2-podoplanin interaction assay in a HTS format and screened 5,016 compounds from a European Union-open screen library. We identified katacine, a mixture of polymers of proanthocyanidins, as a novel ligand for CLEC-2 and showed that it induces platelet aggregation and CLEC-2 phosphorylation via Syk and Src kinases. Platelet aggregation induced by katacine is inhibited by the anti-CLEC-2 monoclonal antibody fragment AYP1 F(ab)'2. Katacine is a novel nonprotein ligand of CLEC-2 that could contribute to a better understanding of CLEC-2 activation in human platelets.


Assuntos
Inflamação , Trombose , Plaquetas/metabolismo , Humanos , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo , Ativação Plaquetária , Trombose/metabolismo
4.
Anal Chem ; 92(10): 6811-6816, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32343119

RESUMO

High-field asymmetric waveform ion mobility spectrometry (FAIMS) enables the separation of ions on the basis of their differential mobility in an asymmetric oscillating electric field. We, and others, have previously demonstrated the benefits of FAIMS for the analysis of peptides and denatured proteins. To date, FAIMS has not been integrated with native mass spectrometry of folded proteins and protein complexes, largely due to concerns over the heating effects associated with the high electric fields employed. Here, we demonstrate the newly introduced cylindrical FAIMS Pro device coupled with an Orbitrap Eclipse enables analysis of intact protein assemblies up to 147 kDa. No evidence for dissociation was detected suggesting that any field heating is insufficient to disrupt the noncovalent interactions governing these assemblies. Moreover, the FAIMS device was integrated into native liquid extraction surface analysis (LESA) MS of protein assemblies directly from thin tissue sections. Intact tetrameric hemoglobin (64 kDa) and trimeric reactive intermediate deiminase A (RidA, 43 kDa) were detected. Improvements in signal-to-noise of between 1.5× and 12× were observed for these protein assemblies on integration of FAIMS.


Assuntos
Álcool Desidrogenase/análise , Anidrases Carbônicas/análise , Concanavalina A/análise , Álcool Desidrogenase/metabolismo , Animais , Anidrases Carbônicas/metabolismo , Concanavalina A/metabolismo , Espectrometria de Mobilidade Iônica , Rim/enzimologia , Espectrometria de Massas , Camundongos , Ratos
5.
Anal Chem ; 88(14): 7060-7, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27328020

RESUMO

Collision-induced dissociation (CID) is the dominant method for probing intact macromolecular complexes in the gas phase by means of mass spectrometry (MS). The energy obtained from collisional activation is dependent on the charge state of the ion and the pressures and potentials within the instrument: these factors limit CID capability. Activation by infrared (IR) laser radiation offers an attractive alternative as the radiation energy absorbed by the ions is charge-state-independent and the intensity and time scale of activation is controlled by a laser source external to the mass spectrometer. Here we implement and apply IR activation, in different irradiation regimes, to study both soluble and membrane protein assemblies. We show that IR activation using high-intensity pulsed lasers is faster than collisional and radiative cooling and requires much lower energy than continuous IR irradiation. We demonstrate that IR activation is an effective means for studying membrane protein assemblies, and liberate an intact V-type ATPase complex from detergent micelles, a result that cannot be achieved by means of CID using standard collision energies. Notably, we find that IR activation can be sufficiently soft to retain specific lipids bound to the complex. We further demonstrate that, by applying a combination of collisional activation, mass selection, and IR activation of the liberated complex, we can elucidate subunit stoichiometry and the masses of specifically bound lipids in a single MS experiment.


Assuntos
Gases/efeitos da radiação , Espectrometria de Massas/métodos , Proteínas de Membrana/efeitos da radiação , Complexos Multiproteicos/efeitos da radiação , Acidianus/enzimologia , Avidina/química , Avidina/efeitos da radiação , Chaperonina 60/química , Chaperonina 60/efeitos da radiação , Gases/química , Raios Infravermelhos , Proteínas de Membrana/química , Micelas , Complexos Multiproteicos/química , Fosfatidilgliceróis/química , Subunidades Proteicas/química , Subunidades Proteicas/efeitos da radiação , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/efeitos da radiação
6.
Anal Chem ; 86(16): 8321-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25026391

RESUMO

Selection and soft-landing of bionanoparticles in vacuum is potentially a preparative approach to separate heterogeneous mixtures for high-resolution structural study or to deposit homogeneous materials for nanotechnological applications. Soft-landing of intact protein assemblies however remains challenging, due to the difficulties of manipulating these heavy species in mass-selective devices and retaining their structure during the experiment. We have developed a tandem mass spectrometer with the capability for controlled ion soft-landing and ex situ visualization of the soft-landed particles by means of transmission electron microscopy. The deposition conditions can be controlled by adjusting the kinetic energies of the ions by applying accelerating or decelerating voltages to a set of ion-steering optics. To validate this approach, we have examined two cage-like protein complexes, GroEL and ferritin, and studied the effect of soft-landing conditions on the method's throughput and the preservation of protein structure. Separation, based on mass-to-charge ratio, of holo- and apo-ferritin complexes after electrospray ionization enabled us to soft-land independently the separated complexes on a grid suitable for downstream transmission electron microscopy analysis. Following negative staining, images of the soft-landed complexes reveal that their structural integrity is largely conserved, with the characteristic central cavity of apoferritin, and iron core of holoferritin, surviving the phase transition from liquid to gas, soft-landing, and dehydration in vacuum.


Assuntos
Chaperonina 60/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Ferritinas/química , Espectrometria de Massas em Tandem/instrumentação , Animais , Desenho de Equipamento , Cavalos , Íons/química , Cinética , Nanopartículas/química , Vácuo
7.
Anal Chem ; 85(8): 3812-6, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23514243

RESUMO

Droplet-based fluidics is emerging as a powerful platform for single cell analysis, directed evolution of enzymes, and high throughput screening studies. Due to the small amounts of compound compartmentalized in each droplet, detection has been primarily by fluorescence. To extend the range of experiments that can be carried out in droplets, we have developed the use of electrospray ionization mass spectrometry (ESI-MS) to measure femtomole quantities of proteins in individual pico- to nanoliter droplets. Surfactant-stabilized droplets containing analyte were produced in a flow-focusing droplet generation microfluidic device using fluorocarbon oil as the continuous phase. The droplets were collected off-chip for storage and reinjected into microfluidic devices prior to spraying the emulsion into an ESI mass spectrometer. Crucially, high quality mass spectra of individual droplets were obtained from emulsions containing a mixture of droplets at >150 per minute, opening up new routes to high throughput screening studies.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Anidrases Carbônicas/análise , Quimotripsinogênio/análise , Citocromos c/análise , Emulsões , Análise de Injeção de Fluxo , Fluorocarbonos/química , Ensaios de Triagem em Larga Escala/instrumentação , Óleos Industriais , Técnicas Analíticas Microfluídicas/instrumentação , Muramidase/análise , Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Tensoativos/química
8.
J Proteome Res ; 4(3): 671-3, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15952713

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)1 is an established technique for the analysis of biological macromolecules. Its relative insensitivity to pollutants makes MALDI-MS very suitable for the direct analysis of biological samples. As such, it has facilitated great advances in the field of biomolecular imaging mass spectrometry. Traditionally, MALDI-MS imaging is performed in a scanning microprobe methodology.(2-4) However, in a recent study we have demonstrated an alternative methodology; the so-called microscope mode,(5) where the requirement for a highly focused ionization beam is removed. Spatial details from within the desorption area are conserved during the flight of the ions through the mass analyzer, and a magnified ion image is projected onto a 2D-detector. In this paper, we demonstrate how imaging mass spectrometry benefits from the microscope mode approach. For the first time, high-lateral resolution ion images were recorded using infrared MALDI at 2.94 microm wavelength. The ion optical resolution achieved was well below the theoretical limit of (light-) diffraction for the setup used, which is impossible to achieve in the conventional scanning microprobe approach.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Raios Infravermelhos , Lasers , Microscopia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
J Mass Spectrom ; 40(2): 160-8, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15706616

RESUMO

Imaging mass spectrometry provides both chemical information and the spatial distribution of each analyte detected. Here it is demonstrated how imaging mass spectrometry of tissue at subcellular resolution can be achieved by combining the high spatial resolution of secondary ion mass spectrometry (SIMS) with the sample preparation protocols of matrix-assisted laser desorption/ionization (MALDI). Despite mechanistic differences and sampling 10(5) times less material, matrix-enhanced (ME)-SIMS of tissue samples yields similar results to MALDI (up to m/z 2500), in agreement with previous studies on standard compounds. In this regard ME-SIMS represents an attractive alternative to polyatomic primary ions for increasing the molecular ion yield. ME-SIMS of whole organs and thin sections of the cerebral ganglia of Lymnaea stagnalis demonstrate the advantages of ME-SIMS for chemical imaging mass spectrometry. Subcellular distributions of cellular analytes are clearly obtained, and the matrix provides an in situ height map of the tissue, allowing the user to identify rapidly regions prone to topographical artifacts and to deconvolute topographical losses in mass resolution and signal-to-noise ratio.


Assuntos
Química Encefálica , Baratas/citologia , Lymnaea/citologia , Espectrometria de Massa de Íon Secundário/métodos , Animais , Encéfalo/citologia , Colesterol/análise , Baratas/química , Gentisatos , Lymnaea/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massa de Íon Secundário/instrumentação , Ácido Trifluoracético
10.
Anal Chem ; 76(18): 5339-44, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15362890

RESUMO

For the first time macromolecular ion microscope images have been recorded using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Single-shot, mass-resolved images of the spatial distributions of intact peptide and protein ions over an area of 200 microm in diameter were obtained in less than 1 ms at a repetition rate of 12 Hz. The magnifying ion optics of the ion microscope allowed ion images to be obtained with a lateral resolution of 4 microm. These results prove the concept of high-resolution MALDI-MS imaging in microscope mode without the need for a tight laser focus and the accompanying sensitivity losses. The ion microscopy approach offers an improvement of several orders of magnitude in speed of acquisition compared to the conventional (microprobe) approach to MALDI-MS imaging.


Assuntos
Peptídeos/análise , Peptídeos/química , Proteínas/análise , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Processamento de Imagem Assistida por Computador , Sensibilidade e Especificidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-14624017

RESUMO

Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.


Assuntos
Poliésteres/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Reprodutibilidade dos Testes
12.
Anal Chem ; 75(17): 4373-81, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-14632039

RESUMO

It is well known in secondary ion mass spectrometry (SIMS) that sample topography leads to decreased mass resolution. Specifically, the ion's time of flight is dependent on where it was generated. Here, using matrix-enhanced SIMS, it is demonstrated that, in addition to increasing the yield of intact pseudomolecular ions, the matrix allows the user to semiquantitatively record the topography of a sample. Through mapping the topography-related mass shifts of the matrix (which leads to decreased mass resolution), the analogous mass shifts of higher mass ions can be deconvoluted and higher resolution and greater sensitivity obtained. Furthermore, the semiquantitative topographical map obtained can be compared with any chemical images obtained, allowing the user to quickly ascertain whether local intensity maximums are due to topological features or represent genuine features of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...