Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 22(1)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36367535

RESUMO

Maltose and maltotriose, together with glucose, are the major carbohydrates found in malts. Thus, brewing yeasts grown in malt-based brewing processes with serial re-pitching have likely increased their ability to uptake these sugars during domestication by modulating the expression and copy number of maltose transporter genes (MALT, also known as Malx1). However, the molecular basis for and structural insights into the sugar preferences of MALT proteins remain to be elucidated. Here we report the functional evaluation of two novel Saccharomyces cerevisiae MALT proteins, ScMalt#2p and ScMalt#5p, from industrial brewing yeasts, focusing on their maltose and maltotriose preferences. Structural models of the MALT proteins generated by AlphaFold2 and functional analyses of substitution mutants revealed that a very small number of amino acid residues in two spatially adjacent transmembrane helixes, TMH7 and TMH11, appear to be crucial for sugar preference. Thus, subtle conformational alterations conferred by a small number of amino acid polymorphisms within MALTs would contribute to the adaptation of domesticated brewing yeasts to the constrained carbohydrate environment of industrial wort during beer brewing.


Assuntos
Saccharomyces , Açúcares , Saccharomyces/genética , Aminoácidos
2.
Membranes (Basel) ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34832053

RESUMO

Membrane proteins reside in the lipid bilayer of biomembranes and the structure and function of these proteins are closely related to their interactions with lipid molecules. Structural analyses of interactions between membrane proteins and lipids or detergents that constitute biological or artificial model membranes are important for understanding the functions and physicochemical properties of membrane proteins and biomembranes. Determination of membrane protein structures is much more difficult when compared with that of soluble proteins, but the development of various new technologies has accelerated the elucidation of the structure-function relationship of membrane proteins. This review summarizes the development of heavy atom derivative detergents and lipids that can be used for structural analysis of membrane proteins and their interactions with detergents/lipids, including their application with X-ray free-electron laser crystallography.

3.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(10): 602-611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827018

RESUMO

In advanced cancer patients, malignant cells invade and disseminate within normal cells and develop resistance to therapy with additional genetic mutations, which makes radical cure very difficult. Precision medicine against advanced cancer is hampered by the lack of systems aimed at multiple target molecules within multiple loci. Here, we report the development of a versatile diagnostic and therapeutic system for advanced cancer, named the Cupid and Psyche system. Based on the strong non-covalent interaction of streptavidin and biotin, a low immunogenic mutated streptavidin, Cupid, and a modified artificial biotin, Psyche, have been designed. Cupid can be fused with various single-chain variable fragment antibodies and forms tetramer to recognize cancer cells precisely. Psyche can be conjugated to a wide range of diagnostic and therapeutic agents against malignant cells. The Cupid and Psyche system can be used in pre-targeting therapy as well as photo-immunotherapy effectively in animal models supporting the concept of a system for precision medicine for multiple targets within multiple loci.


Assuntos
Antineoplásicos/química , Biotina/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Estreptavidina/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Medicina de Precisão , Anticorpos de Cadeia Única/química
4.
FEBS J ; 286(19): 3926-3940, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31162806

RESUMO

Branched-chain polyamine synthase (BpsA) catalyzes sequential aminopropyl transfer from the donor, decarboxylated S-adenosylmethionine (dcSAM), to the acceptor, linear-chain polyamine, resulting in the production of a quaternary-branched polyamine via tertiary branched polyamine intermediates. Here, we analyzed the catalytic properties and X-ray crystal structure of Tth-BpsA from Thermus thermophilus and compared them with those of Tk-BpsA from Thermococcus kodakarensis, which revealed differences in acceptor substrate specificity and C-terminal structure between these two enzymes. To investigate the role of the C-terminal flexible region in acceptor recognition, a region (QDEEATTY) in Tth-BpsA was replaced with that in Tk-BpsA (YDDEESSTT) to create chimeric Tth-BpsA C9, which showed a severe reduction in catalytic efficiency toward N4 -aminopropylnorspermidine, but not toward N4 -aminopropylspermidine, mimicking Tk-BpsA substrate specificity. Tth-BpsA C9 Tyr346 and Thr354 contributed to discrimination between tertiary branched-chain polyamine substrates, suggesting that the C-terminal region of BpsA recognizes acceptor substrates. Liquid chromatography-tandem mass spectrometry analysis on a Tk-BpsA reaction mixture with dcSAM revealed two aminopropyl groups bound to two of five aspartate/glutamate residues (Glu339 , Asp342 , Asp343 , Glu344 , and Glu345 ) in the C-terminal flexible region. Mutating each of these five amino acid residues to asparagine/glutamine resulted in a slight decrease in activity. The quadruple mutant D342N/D343N/E344Q/E345Q exhibited a severe reduction in catalytic efficiency, suggesting that these aspartate/glutamate residues function to receive aminopropyl chains. In addition, the X-ray crystal structure of the Tk-BpsA ternary complex bound to N4 -bis(aminopropyl)spermidine revealed that Asp126 and Glu259 interacted with the aminopropyl moiety in N4 -aminopropylspermidine.


Assuntos
Poliaminas/metabolismo , Espermidina Sintase/metabolismo , Catálise , Cromatografia Líquida , Espermidina Sintase/química , Especificidade por Substrato , Espectrometria de Massas em Tandem , Thermococcus/enzimologia , Thermus thermophilus/enzimologia
5.
Structure ; 27(3): 519-527.e5, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30595454

RESUMO

To investigate favorable single amino acid substitutions that improve antigen-antibody interactions, alanine (Ala) mutagenesis scanning of the interfacial residues of a cancer-targeted antibody, B5209B, was performed based on X-ray crystallography analysis. Two substitutions were shown to significantly enhance the binding affinity for the antigen, by up to 30-fold. One substitution improved the affinity by a gain of binding enthalpy, whereas the other substitution improved the affinity by a gain of binding entropy. Molecular dynamics simulations showed that the enthalpic improvement could be attributed to the stabilization of distant salt bridges located at the periphery of the antigen-antibody interface. The entropic improvement was due to the release of water molecules that were stably trapped in the antigen-antibody interface of the wild-type antibody. Importantly, these effects of the Ala substitutions were caused by subtle adjustments of the binding interface. These results will be helpful to design high-affinity antibodies with avoiding entropy-enthalpy compensation.


Assuntos
Alanina/genética , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Neoplasias/imunologia , Substituição de Aminoácidos , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Neoplasias/terapia , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas
6.
ACS Appl Bio Mater ; 2(11): 4941-4952, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021494

RESUMO

In cellulo crystallization is a developing technique to provide crystals for protein structure determination, particularly for proteins that are difficult to prepare by in vitro crystallization. This method has a key advantage: it requires neither a protein purification step nor a crystallization step. However, there is still no systematic strategy for improving the technique of in cellulo crystallization because the process occurs spontaneously. Here we report a protocol to produce and extract in cellulo crystals of human lysosomal neuraminidase-1 (NEU1) in human cultured cells. Overexpression of NEU1 protein by the retransfection of cells pretransfected with neu1-overexpressing plasmid improved the efficiency of NEU1 crystallization. Microscopic analysis revealed that NEU1 proteins were not crystallized in the lysosome but in the endoplasmic reticulum (ER). Screening of the buffer conditions used to extract crystals from cells further improved the crystal yield. The optimal pH was 7.0, which corresponds to the pH in the ER. Use of a high-yield flask with a large surface area also yielded more crystals. These optimizations enabled us to execute a serial femtosecond crystallography experiment with a sufficient number of crystals to generate a complete data set. Optimization of the in cellulo crystallization method was thus shown to be possible.

7.
Biochem Soc Trans ; 47(1): 179-185, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30559271

RESUMO

It is believed that organisms that first appeared after the formation of the earth lived in a very limited environment, making full use of the limited number of genes. From these early organisms' genes, more were created by replication, mutation, recombination, translocation, and transmission of other organisms' DNA; thus, it became possible for ancient organisms to grow in various environments. The photosynthetic CO2-fixing enzyme RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) began to function in primitive methanogenic archaea and has been evolved as a central CO2-fixing enzyme in response to the large changes in CO2 and O2 concentrations that occurred in the subsequent 4 billion years. In this review, the processes of its adaptation to be specialized for CO2 fixation will be presented from the viewpoint of functions and structures of RuBisCO.


Assuntos
Ribulose-Bifosfato Carboxilase/metabolismo , Animais , Archaea/enzimologia , Dióxido de Carbono/metabolismo , Humanos , Oxigênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/química
8.
IUCrJ ; 5(Pt 5): 619-634, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224965

RESUMO

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxo-bacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium.

9.
Acta Crystallogr D Struct Biol ; 74(Pt 8): 769-777, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30082512

RESUMO

Copper-containing nitrite reductases (CuNIRs) are multifunctional enzymes that catalyse the one-electron reduction of nitrite (NO2-) to nitric oxide (NO) and the two-electron reduction of dioxygen (O2) to hydrogen peroxide (H2O2). In contrast to the mechanism of nitrite reduction, that of dioxygen reduction is poorly understood. Here, results from anaerobic synchrotron-radiation crystallography (SRX) and aerobic in-house radiation crystallography (iHRX) with a CuNIR from the thermophile Geobacillus thermodenitrificans (GtNIR) support the hypothesis that the dioxygen present in an aerobically manipulated crystal can bind to the catalytic type 2 copper (T2Cu) site of GtNIR during SRX experiments. The anaerobic SRX structure showed a dual conformation of one water molecule as an axial ligand in the T2Cu site, while previous aerobic SRX GtNIR structures were refined as diatomic molecule-bound states. Moreover, an SRX structure of the C135A mutant of GtNIR with peroxide bound to the T2Cu atom was determined. The peroxide molecule was mainly observed in a side-on binding manner, with a possible minor end-on conformation. The structures provide insights into dioxygen chemistry in CuNIRs and hence help to unmask the other face of CuNIRs.


Assuntos
Cristalografia por Raios X , Geobacillus/enzimologia , Nitrito Redutases/química , Oxigênio/química , Domínio Catalítico , Geobacillus/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Ligantes , Nitrito Redutases/metabolismo , Oxigênio/metabolismo , Ligação Proteica , Síncrotrons , Água/química
10.
J Plant Res ; 131(5): 839-848, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29725892

RESUMO

The B race of a green microalga Botryococcus braunii Kützing produces triterpene hydrocarbons that is a promising source for biofuel. In this algal race, precursors of triterpene hydrocarbons are provided from the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The terminal enzyme of this pathway, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is regarded as one of the key enzymes that affect yields of products in terpene biosynthesis. In order to better understand the MEP pathway of the alga, cDNA and genomic clones of HDR were obtained from B. braunii Showa strain. B. braunii HDR (BbHDR) is encoded on a single copy gene including a 1509-bp open reading frame that was intervened by 6 introns. The exon-intron structure of BbHDR genes did not show clear relation to phylogeny, while its amino acid sequence reflected phyla and classes well. BbHDR sequence was distinctive from that of the HDR protein from Escherichia coli in the residues involved in hydrogen-bond network that surrounds substrate. Introduction of BbHDR cDNA into an E. coli HDR deficient mutant resulted in recovery of its auxotrophy. BbHDR expression level was upregulated from the onset of liquid culture to the 24th day after inoculation with a 2.5-fold increase and retained its level in the subsequent period.


Assuntos
Proteínas de Algas/metabolismo , Clorófitas/enzimologia , Eritritol/análogos & derivados , Hidrocarbonetos/metabolismo , Oxirredutases/metabolismo , Fosfatos Açúcares/metabolismo , Proteínas de Algas/genética , Sequência de Aminoácidos , Clorófitas/genética , Clonagem Molecular , DNA Complementar/genética , Eritritol/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fases de Leitura Aberta/genética , Oxirredutases/genética , Filogenia , Triterpenos/metabolismo
11.
Plant Biotechnol (Tokyo) ; 35(3): 297-301, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31819737

RESUMO

The green microalga Botryococcus braunii Showa, which produces large amounts of triterpene hydrocarbons, exclusively uses the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosyntheses, and the terminal enzyme in this pathway, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), is regarded as a light-dependent key regulatory enzyme. In order to investigate the possible association of HDR and ferredoxin in this organism, we constructed tertiary structure models of B. braunii HDR (BbHDR) and one of ferredoxin families in the alga, a photosynthetic electron transport F (BbPETF)-like protein, by using counterparts from E. coli and Chlamydomonas reinhardtii as templates, respectively, and performed docking analysis of these two proteins. After docked models are superimposed onto their counterpart proteins in a non-photosynthetic organism, Plasmodium falciparum, the BbPETF-like protein comes in contact with the backside of BbHDR, which was defined in a previous report (Rekittke et al. 2013), and the distance of the two Fe-S centers is 14.7 Å. This distance is in almost the same level as that for P. falicarum, 12.6 Å. To our knowledge, this is the first model suggesting the possible association of HDR with a ferredoxin in O2-evolving photosynthetic organisms.

12.
Biophys Rev ; 10(2): 209-218, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29196935

RESUMO

X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 µm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 µm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 µm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.

13.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150515

RESUMO

Feruloyl esterases (FAEs) are key enzymes required for the production of ferulic acid from agricultural biomass. Previously, we identified and characterized R18, an FAE from Streptomyces cinnamoneus NBRC 12852, which showed no sequence similarity to the known FAEs. To determine the region involved in its catalytic activity, we constructed chimeric enzymes using R18 and its homolog (TH2-18) from S. cinnamoneus strain TH-2. Although R18 and TH2-18 showed 74% identity in their primary sequences, the recombinant proteins of these two FAEs (recombinant R18 [rR18] and rTH2-18) showed very different specific activities toward ethyl ferulate. By comparing the catalytic activities of the chimeras, a domain comprised of residues 140 to 154 was found to be crucial for the catalytic activity of R18. Furthermore, we analyzed the crystal structure of rR18 at a resolution of 1.5 Å to elucidate the relationship between its activity and its structure. rR18 possessed a typical catalytic triad, consisting of Ser-191, Asp-214, and His-268, which was characteristic of the serine esterase family. By structural analysis, the above-described domain was found to be present in a loop-like structure (the R18 loop), which possessed a disulfide bond conserved in the genus Streptomyces Moreover, compared to rTH2-18 of its parental strain, the TH2-18 mutant, in which Pro and Gly residues were inserted into the domain responsible for forming the R18 loop, showed markedly high kcat values using artificial substrates. We also showed that the FAE activity of TH2-18 toward corn bran, a natural substrate, was improved by the insertion of the Gly and Pro residues.IMPORTANCEStreptomyces species are widely distributed bacteria that are predominantly present in soil and function as decomposers in natural environments. They produce various enzymes, such as carbohydrate hydrolases, esterases, and peptidases, which decompose agricultural biomass. In this study, based on the genetic information on two Streptomyces cinnamoneus strains, we identified novel feruloyl esterases (FAEs) capable of producing ferulic acid from biomass. These two FAEs shared high similarity in their amino acid sequences but did not resemblance any known FAEs. By comparing chimeric proteins and performing crystal structure analysis, we confirmed that a flexible loop was important for the catalytic activity of Streptomyces FAEs. Furthermore, we determined that the catalytic activity of one FAE was improved drastically by inserting only 2 amino acids into its loop-forming domain. Thus, differences in the amino acid sequence of the loop resulted in different catalytic activities. In conclusion, our findings provide a foundation for the development of novel enzymes for industrial use.


Assuntos
Biomassa , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Streptomyces/enzimologia , Hidrolases de Éster Carboxílico/genética , Catálise , Cristalização , Esterases/genética , Proteínas Fúngicas/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato
14.
Biochemistry ; 56(47): 6281-6291, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29094929

RESUMO

Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.


Assuntos
Proteínas de Bactérias/química , Lipase/química , Lipase/metabolismo , Proteínas de Fusão de Membrana/química , Fusão de Membrana/fisiologia , Nucleotídeos/metabolismo , Serratia marcescens/enzimologia , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Fusão de Membrana/metabolismo , Nucleotídeos/química , Conformação Proteica
15.
Nat Commun ; 8(1): 1585, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29147002

RESUMO

Time-resolved serial femtosecond crystallography using an X-ray free electron laser (XFEL) in conjunction with a photosensitive caged-compound offers a crystallographic method to track enzymatic reactions. Here we demonstrate the application of this method using fungal NO reductase, a heme-containing enzyme, at room temperature. Twenty milliseconds after caged-NO photolysis, we identify a NO-bound form of the enzyme, which is an initial intermediate with a slightly bent Fe-N-O coordination geometry at a resolution of 2.1 Å. The NO geometry is compatible with those analyzed by XFEL-based cryo-crystallography and QM/MM calculations, indicating that we obtain an intact Fe3+-NO coordination structure that is free of X-ray radiation damage. The slightly bent NO geometry is appropriate to prevent immediate NO dissociation and thus accept H- from NADH. The combination of using XFEL and a caged-compound is a powerful tool for determining functional enzyme structures during catalytic reactions at the atomic level.

16.
IUCrJ ; 4(Pt 5): 639-647, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989719

RESUMO

Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 Šwavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.

17.
FEBS J ; 284(21): 3684-3701, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28881427

RESUMO

Branched-chain polyamines are found exclusively in thermophilic bacteria and Euryarchaeota and play essential roles in survival at high temperatures. In the present study, kinetic analyses of a branched-chain polyamine synthase from the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-BpsA) were conducted, showing that N4 -bis(aminopropyl)spermidine was produced by sequential additions of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine, through bifunctional catalytic action. Tk-BpsA catalyzed the aminopropylation of the linear-chain polyamines spermidine, spermine, norspermidine, and the tertiary-branched polyamines N4 -aminopropylspermidine and N4 -aminopropylnorspermidine, but not of short-chain diamines, putrescine, and cadaverine, suggesting that Tk-BpsA does not catalyze the aminopropylation of primary amino groups of diamines. X-ray structural analyses of Tk-BpsA in the presence or absence of the substrates spermidine and dcSAM revealed that a large, negatively charged cavity is responsible for the binding of branched-chain substrates. The binding is different from that in the active site of linear polyamine spermidine/spermine synthases, and loop-closures occur upon the binding of spermidine. Based on structural analyses, further kinetic studies were carried out for various mutants, revealing that Asp159, positioned between the reactive secondary amino group of the substrate polyamine and a sulfur atom of the product 5'-methylthioadenosine and in a Gly-Asp-Asp-Asp motif, functions as a catalytic center, with reactions proceeding via a ping-pong mechanism. Our study provides a novel aminopropyltransfer reaction mechanism, distinct from the SN 2 displacement mechanism found in other known linear spermidine/spermine synthases. DATABASE: Atomic coordinates and structure factors have been deposited in the Protein Data Bank with PDB codes 5XNF for apo-Tk-BpsA, 5XNH for the binary complex, and 5XNC for the ternary complex.


Assuntos
Poliaminas/metabolismo , Espermidina Sintase/química , Espermidina Sintase/metabolismo , Thermococcus/enzimologia , Biocatálise , Domínio Catalítico , Cinética , Mutagênese Sítio-Dirigida , Poliaminas/química , Espermidina Sintase/genética
18.
FEBS Lett ; 591(16): 2470-2481, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28730604

RESUMO

Ras undergoes post-translational modifications including farnesylation, proteolysis, and carboxymethylation at the C terminus, which are necessary for membrane recruitment and effector recognition. Full activation of c-Raf-1 requires cooperative interaction of the farnesylated C terminus and the activator region of Ras with its cysteine-rich domain (CRD). However, the molecular basis for this interaction remains unclear because of difficulties in preparing modified Ras in amounts sufficient for structural studies. Here, we use Sortase A-catalyzed protein ligation to prepare modified Ras in sufficient amounts for NMR and X-ray crystallographic analyses. The results show that the farnesylated C terminus establishes an intramolecular interaction with the catalytic domain and brings the farnesyl moiety to the proximity of the activator region, which may be responsible for their cooperative recognition of c-Raf-1-CRD.


Assuntos
Guanosina Trifosfato/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas ras/química , Proteínas ras/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica
19.
FEBS Lett ; 591(16): 2458-2469, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28703282

RESUMO

Upon stopping metabolic processes, some tardigrades can undergo anhydrobiosis. Secretory abundant heat-soluble (SAHS) proteins have been reported as candidates for anhydrobiosis-related proteins in tardigrades, which seem to protect extracellular components and/or secretory organelles. We determined structures of a SAHS protein from Ramazzottius varieornatus (RvSAHS1), which is one of the toughest tardigrades. RvSAHS1 shows a ß-barrel structure similar to fatty acid-binding proteins (FABPs), in which hydrophilic residues form peculiar hydrogen bond networks, which would provide RvSAHS1 with better tolerance against dehydration. We identified two putative ligand-binding sites: one that superimposes on those of some FABPs and the other, unique to and conserved in SAHS proteins. These results indicate that SAHS proteins constitute a new FABP family.


Assuntos
Temperatura Alta , Proteínas/química , Proteínas/metabolismo , Tardígrados , Animais , Modelos Moleculares , Conformação Proteica em Folha beta , Alinhamento de Sequência , Solubilidade
20.
ACS Chem Biol ; 12(7): 1947-1955, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28621933

RESUMO

In the effort to combat antibiotic resistance, inhibitors of the essential bacterial protein FtsZ have emerged as a promising new class of compounds with clinical potential. One such FtsZ inhibitor (TXA707) is associated with potent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) that are resistant to current standard-of-care antibiotics. However, mutations in S. aureus FtsZ (SaFtsZ) that confer resistance to TXA707 have been observed, with mutations in the Gly196 and Gly193 residues being among the most prevalent. Here, we describe structural studies of an FtsZ inhibitor, TXA6101, which retains activity against MRSA isolates that express either G196S or G193D mutant FtsZ. We present the crystal structures of TXA6101 in complex with both wild-type SaFtsZ and G196S mutant SaFtsZ, as well the crystal structure of TXA707 in complex with wild-type SaFtsZ. Comparison of the three structures reveals a molecular basis for the differential targeting abilities of TXA6101 and TXA707. The greater structural flexibility of TXA6101 relative to TXA707 enables TXA6101 to avoid steric clashes with Ser196 and Asp193. Our structures also demonstrate that the binding of TXA6101 induces previously unobserved conformational rearrangements of SaFtsZ residues in the binding pocket. In aggregate, the structures reported in this work reveal key factors for overcoming drug resistance mutations in SaFtsZ and offer a structural basis for the design of FtsZ inhibitors with enhanced antibacterial potency and reduced susceptibility to mutational resistance.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Resistência a Medicamentos/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Mutação , Antibacterianos/química , Antibacterianos/farmacologia , Cristalografia por Raios X , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...