Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(5): 3191-3199, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855684

RESUMO

Stimulated Raman scattering (SRS) microscopy is a powerful vibrational imaging technique with high chemical specificity. However, the insufficient tuning range or speed of light sources limits the spectral range of SRS imaging and, hence, the ability to identify molecular species. Here, we present a widely tunable fiber optical parametric oscillator with a tuning range of 1470 cm-1, which can be synchronized with a Ti:sapphire laser. By using the synchronized light sources, we develop an SRS imaging system that covers the fingerprint and C-H stretching regions, without balanced detection. We validate its broadband imaging capability by visualizing a mixed polymer sample in multiple vibrational modes. We also demonstrate SRS imaging of HeLa cells, showing the applicability of our SRS microscope to biological samples.

2.
Anal Chem ; 96(17): 6643-6651, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626411

RESUMO

Visualizing the distribution of small-molecule drugs in living cells is an important strategy for developing specific, effective, and minimally toxic drugs. As an alternative to fluorescence imaging using bulky fluorophores or cell fixation, stimulated Raman scattering (SRS) imaging combined with bisarylbutadiyne (BADY) tagging enables the observation of small molecules closer to their native intracellular state. However, there is evidence that the physicochemical properties of BADY-tagged analogues of small-molecule drugs differ significantly from those of their parent drugs, potentially affecting their intracellular distribution. Herein, we developed a modified BADY to reduce deviations in physicochemical properties (in particular, lipophilicity and membrane permeability) between tagged and parent drugs, while maintaining high Raman activity in live-cell SRS imaging. We highlight the practical application of this approach by revealing the nuclear distribution of a modified BADY-tagged analogue of JQ1, a bromodomain and extra-terminal motif inhibitor with applications in targeted cancer therapy, in living HeLa cells. The modified BADY, methoxypyridazyl pyrimidyl butadiyne (MPDY), revealed intranuclear JQ1, while BADY-tagged JQ1 did not show a clear nuclear signal. We anticipate that the present approach combining MPDY tagging with live-cell SRS imaging provides important insight into the behavior of intracellular drugs and represents a promising avenue for improving drug development.


Assuntos
Núcleo Celular , Humanos , Células HeLa , Núcleo Celular/química , Núcleo Celular/metabolismo , Microscopia Óptica não Linear/métodos , Alcinos/química , Análise Espectral Raman/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Sci Adv ; 9(24): eade9118, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327330

RESUMO

Super-resolution vibrational microscopy is promising to increase the degree of multiplexing of nanometer-scale biological imaging because of the narrower spectral linewidth of molecular vibration compared to fluorescence. However, current techniques of super-resolution vibrational microscopy suffer from various limitations including the need for cell fixation, high power loading, or complicated detection schemes. Here, we present reversible saturable optical Raman transitions (RESORT) microscopy, which overcomes these limitations by using photoswitchable stimulated Raman scattering (SRS). We first describe a bright photoswitchable Raman probe (DAE620) and validate its signal activation and depletion characteristics when exposed to low-power (microwatt level) continuous-wave laser light. By harnessing the SRS signal depletion of DAE620 through a donut-shaped beam, we demonstrate super-resolution vibrational imaging of mammalian cells with excellent chemical specificity and spatial resolution beyond the optical diffraction limit. Our results indicate RESORT microscopy to be an effective tool with high potential for multiplexed super-resolution imaging of live cells.


Assuntos
Microscopia , Vibração , Animais , Microscopia/métodos , Análise Espectral Raman/métodos , Mamíferos
4.
J Phys Chem B ; 127(22): 4952-4958, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224384

RESUMO

The stratum corneum (SC), the outermost layer of the skin, has an important function to provide a barrier against dry environments. To evaluate the barrier function and the skin condition, it is crucial to investigate the ability of SC to absorb and retain water. In this study, we demonstrate stimulated Raman scattering (SRS) imaging of three-dimensional SC structure and water distribution when water is absorbed into dried SC sheets. Our results show that the process of water absorption and retention is dependent on the specific sample and can be spatially heterogeneous. We also found that acetone treatment leads to spatially homogeneous retention of water. These results suggest the great potential of SRS imaging in diagnosing skin conditions.


Assuntos
Análise Espectral Raman , Água , Humanos , Análise Espectral Raman/métodos , Pele/química , Epiderme , Acetona
5.
Front Chem ; 11: 1141920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065821

RESUMO

Introduction: Visualizing small individual biomolecules at subcellular resolution in live cells and tissues can provide valuable insights into metabolic activity in heterogeneous cells, but is challenging. Methods: Here, we used stimulated Raman scattering (SRS) microscopy to image deuterated methionine (d-Met) incorporated into Drosophila tissues in vivo. Results: Our results demonstrate that SRS can detect a range of previously uncharacterized cell-to-cell differences in d-Met distribution within a tissue at the subcellular level. Discussion: These results demonstrate the potential of SRS microscopy for metabolic imaging of less abundant but important amino acids such as methionine in tissue.

6.
J Am Chem Soc ; 145(16): 8871-8881, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057960

RESUMO

Detecting multiple enzyme activities simultaneously with high spatial specificity is a promising strategy to investigate complex biological phenomena, and Raman imaging would be an excellent tool for this purpose due to its high multiplexing capabilities. We previously developed activatable Raman probes based on 9CN-pyronins, but specific visualization of cells with target enzyme activities proved difficult due to leakage of the hydrolysis products from the target cells after activation. Here, focusing on rhodol bearing a nitrile group at the position of 9 (9CN-rhodol), we established a novel mechanism for Raman signal activation based on a combination of aggregate formation (to increase local dye concentration) and the resonant Raman effect along with the bathochromic shift of the absorption, and utilized it to develop Raman probes. We selected the 9CN-rhodol derivative 9CN-JCR as offering a suitable combination of increased stimulated Raman scattering (SRS) signal intensity and high aggregate-forming ability, resulting in good retention in target cells after probe activation. By using isotope-edited 9CN-JCR-based probes, we could simultaneously detect ß-galactosidase, γ-glutamyl transpeptidase, and dipeptidyl peptidase-4 activities in live cultured cells and distinguish cell regions expressing target enzyme activity in Drosophila wing disc and fat body ex vivo.


Assuntos
Análise Espectral Raman , gama-Glutamiltransferase , Animais , Células Cultivadas
7.
Opt Lett ; 47(22): 5829-5832, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219114

RESUMO

Quantum-enhanced stimulated Raman scattering (QESRS) microscopy is expected to realize molecular vibrational imaging with sub-shot-noise sensitivity, so that weak signals buried in the laser shot noise can be uncovered. Nevertheless, the sensitivity of previous QESRS did not exceed that of state-of-the-art stimulated Raman scattering (SOA-SRS) microscopes mainly because of the low optical power (3 mW) of amplitude squeezed light [Nature594, 201 (2021)10.1038/s41586-021-03528-w]. Here, we present QESRS based on quantum-enhanced balanced detection (QE-BD). This method allows us to operate QESRS in a high-power regime (>30 mW) that is comparable to SOA-SRS microscopes, at the expense of 3 dB sensitivity drawback due to balanced detection. We demonstrate QESRS imaging with 2.89 dB noise reduction compared with classical balanced detection scheme. The present demonstration confirms that QESRS with QE-BD can work in the high-power regime, and paves the way for breaking the sensitivity of SOA-SRS microscopes.

8.
Biophys Rev ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108561

RESUMO

The plasma membrane is a lipid bilayer of < 10 nm width that separates intra- and extra-cellular environments and serves as the site of cell-cell communication, as well as communication between cells and the extracellular environment. As such, biophysical phenomena at and around the plasma membrane play key roles in determining cellular physiology and pathophysiology. Thus, the selective visualization and characterization of the plasma membrane are crucial aspects of research in wide areas of biology and medicine. However, the specific characterization of the plasma membrane has been a challenge using conventional imaging techniques, which are unable to effectively distinguish between signals arising from the plasma membrane and those from intracellular lipid structures. In this regard, interface-specific second harmonic generation (SHG) and sum-frequency generation (SFG) imaging demonstrate great potential. When combined with exogenous SHG/SFG active dyes, SHG/SFG can specifically highlight the plasma membrane as the most prominent interface associated with cells. Furthermore, SHG/SFG imaging can be readily extended to multimodal multiphoton microscopy with simultaneous occurrence of other multiphoton phenomena, including multiphoton excitation and coherent Raman scattering, which shed light on the biophysical properties of the plasma membrane from different perspectives. Here, we review traditional and current applications, as well as the prospects of long-known but unexplored SHG/SFG imaging techniques in biophysics, with special focus on their use in the biophysical characterization of the plasma membrane.

9.
Anal Chem ; 92(8): 5656-5660, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32202108

RESUMO

Coherent anti-Stokes Raman scattering (CARS) imaging is widely used for imaging molecular vibrations inside cells and tissues. Lipid bilayers are potential analytes for CARS imaging due to their abundant CH2 vibrational bonds. However, identifying the plasma membrane is challenging since it possesses a thin structure and is closely apposed to lipid structures inside the cells. Since the plasma membrane provides the most prominent asymmetric location within cells, orientation sensitive sum-frequency generation (SFG) imaging is a promising technique for selective visualization of the plasma membrane labeled by a nonfluorescent and SFG-specific dye, Ap3, when using a CARS microscope system. In this study, we closely compare the characteristics of lipid bilayer imaging by dye-based SFG and CARS using giant vesicles (GVs) and N27 rat dopaminergic neural cells. As a result, we show that CARS imaging can be exploited for the visualization of whole lipid structures inside GVs and cells but is insufficient for identification of the plasma membrane, which instead can be achieved using dye-based SFG imaging. In addition, we demonstrate that these unique properties can be combined and applied to the live-cell tracking of intracellular lipid structures such as lipid droplets beneath the plasma membrane. Thus, multimodal multiphoton imaging through a combination of dye-based SFG and CARS can serve as a powerful chemical imaging tool to investigate lipid bilayers in GVs and living cells.


Assuntos
Corantes Fluorescentes/química , Bicamadas Lipídicas/análise , Imagem Molecular , Fótons , Animais , Células Cultivadas , Estrutura Molecular , Fosfatidilcolinas/química , Ratos , Análise Espectral Raman
10.
Colloids Surf B Biointerfaces ; 186: 110716, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865122

RESUMO

In the present work, dye-based sum-frequency generation (SFG) imaging using sodium 4-[4-(dibutylamino)phenylazo]benzenesulfonate (butyl orange, BO) as a new non-fluorescent specific azo dye is employed to monitor the morphological evolution of giant vesicles (GVs). After loading BO to the membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single-component GVs, the outermost membranes were clearly visualized using SFG microscopy, which provided images of the distinct outer and inner faces of the lipid bilayers. In addition, SFG-active vesicles were detected also inside the GVs, depending on the dye concentrations. The dye-based SFG imaging technique provided experimental evidence that these oligolamellar vesicles containing an SFG-active interior had been formed after BO loading. The formation process of the oligolamellar vesicles with inner SFG-active vesicles was successfully monitored, and their formation mechanism was discussed.


Assuntos
Compostos Azo/química , Corantes Fluorescentes/química , Fosfatidilcolinas/química , Estrutura Molecular , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
11.
Analyst ; 144(18): 5381-5388, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31463499

RESUMO

Complicated DNA molecular behaviors exist during translocation into a nanopore because their large and coiled structure needs to unwind. In this work, we investigated DNA translocation dynamics through a 200 nm pore using a fast photon counting system (FPCS). We found that the dwell time of the DNA molecules depends on the inverse of voltage (τ∝V-1.02) with a large constant term (∼1 ms). In other words, spherical fluorescence bead translocation involves electrophoresis as well as other additional factors. Our theoretical calculation suggested that one additional factor is electro-osmotic trapping associated with the instantaneous Brownian motion before and after translocation. Furthermore, compressed DNA molecular conformation was seen as a result of the increase of peak photon counts and the decrease of electrophoretic mobility with voltage. Our experiments showed that the polymers at the vicinity of a nanopore can be trapped and compressed, which is necessary to understand how to control the polymer translocation into a nanopore.


Assuntos
DNA/química , Nanoporos , Eletroforese , Fluorescência , Medições Luminescentes , Conformação de Ácido Nucleico
12.
iScience ; 9: 359-366, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30466062

RESUMO

The plasma membrane is the site of intercellular communication and subsequent intracellular signal transduction. The specific visualization of the plasma membrane in living cells, however, is difficult using fluorescence-based techniques owing to the high background signals from intracellular organelles. In this study, we show that second harmonic generation (SHG) is a high-resolution plasma membrane-selective imaging technique that enables multifaceted investigations of the plasma membrane. In contrast to fluorescence imaging, SHG specifically visualizes the plasma membrane at locations that are not attached to artificial substrates and allows high-resolution imaging because of its subresolution nature. These properties were exploited to measure the distances from the plasma membrane to subcortical actin and tubulin fibers, revealing the precise cytoskeletal organization beneath the plasma membrane. Thus, SHG imaging enables the specific visualization of phenomena at the plasma membrane with unprecedented precision and versatility and should facilitate cell biology research focused on the plasma membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...