Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(6): 939-951, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169872

RESUMO

Mobile genetic elements (MEs) are heritable mutagens that recursively generate structural variants (SVs). ME variants (MEVs) are difficult to genotype and integrate in statistical genetics, obscuring their impact on genome diversification and traits. We developed a tool that accurately genotypes MEVs using short-read whole-genome sequencing (WGS) and applied it to global human populations. We find unexpected population-specific MEV differences, including an Alu insertion distribution distinguishing Japanese from other populations. Integrating MEVs with expression quantitative trait loci (eQTL) maps shows that MEV classes regulate tissue-specific gene expression by shared mechanisms, including creating or attenuating enhancers and recruiting post-transcriptional regulators, supporting class-wide interpretability. MEVs more often associate with gene expression changes than SNVs, thus plausibly impacting traits. Performing genome-wide association study (GWAS) with MEVs pinpoints potential causes of disease risk, including a LINE-1 insertion associated with keloid and fasciitis. This work implicates MEVs as drivers of human divergence and disease risk.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Regulação da Expressão Gênica , Locos de Características Quantitativas , Fenótipo
2.
Clin Gastroenterol Hepatol ; 20(9): 2132-2141.e9, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33309985

RESUMO

BACKGROUND & AIMS: Colorectal cancer (CRC) is one of the most common cancers in the world. A small proportion of CRCs can be attributed to recognizable hereditary germline variants of known CRC susceptibility genes. To better understand cancer risk, it is necessary to explore the prevalence of hereditary CRC and pathogenic variants of multiple cancer-predisposing genes in non-European populations. METHODS: We analyzed the coding regions of 27 cancer-predisposing genes in 12,503 unselected Japanese CRC patients and 23,705 controls by target sequencing and genome-wide SNP chip. Their clinical significance was assessed using ClinVar and the guidelines by ACMG/AMP. RESULTS: We identified 4,804 variants in the 27 genes and annotated them as pathogenic in 397 and benign variants in 941, of which 43.6% were novel. In total, 3.3% of the unselected CRC patients and 1.5% of the controls had a pathogenic variant. The pathogenic variants of MSH2 (odds ratio (OR) = 18.1), MLH1 (OR = 8.6), MSH6 (OR = 4.9), APC (OR = 49.4), BRIP1 (OR=3.6), BRCA1 (OR = 2.6), BRCA2 (OR = 1.9), and TP53 (OR = 1.7) were significantly associated with CRC development in the Japanese population (P-values<0.01, FDR<0.05). These pathogenic variants were significantly associated with diagnosis age and personal/family history of cancer. In total, at least 3.5% of the Japanese CRC population had a pathogenic variant or CNV of the 27 cancer-predisposing genes, indicating hereditary cancers. CONCLUSIONS: This largest study of CRC heredity in Asia can contribute to the development of guidelines for genetic testing and variant interpretation for heritable CRCs.


Assuntos
Neoplasias Colorretais , Mutação em Linhagem Germinativa , Detecção Precoce de Câncer , Predisposição Genética para Doença , Testes Genéticos , Humanos , Japão
3.
Sci Rep ; 8(1): 16104, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382134

RESUMO

When sequencing eukaryotic genomes, linkage maps are indispensable for building scaffolds to assemble and/or to validate chromosomes. However, current approaches to constructing linkage maps are limited by marker density and cost-effectiveness, especially for wild organisms. We have now devised a new strategy based on artificially generated hybrid organisms to acquire ultrahigh-density genomic markers at reduced cost and build highly accurate linkage maps. We have also developed the novel analysis pipeline Scaffold Extender with Low Depth Linkage Analysis (SELDLA) for data processing to generate linkage maps and draft genomes. Using SELDLA, linkage maps and improved genomes for two species of pufferfish, Takifugu rubripes and Takifugu stictonotus, were obtained simultaneously. The strategy is applicable to a wide range of sexually reproducing organisms, and could, therefore, accelerate the whole genome analysis of various organisms including fish, mollusks, amphibians, insects, plants, and even mammals.


Assuntos
Mapeamento Cromossômico , Proteínas de Peixes/genética , Ligação Genética , Genoma , Polimorfismo de Nucleotídeo Único , Takifugu/genética , Animais , Cromossomos , Repetições de Microssatélites , Locos de Características Quantitativas , Sintenia , Takifugu/classificação
4.
Genes (Basel) ; 9(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495372

RESUMO

Next-generation sequencing enables genome-wide genotyping of a large population and further facilitates the construction of a genetic linkage map. Low-coverage whole-genome sequencing has been employed for genetic linkage map construction in several species. However, this strategy generally requires available high-quality reference genomes and/or designed inbred pedigree lines, which restrict the scope of application for non-model and unsequenced species. Here, using torafugu (Takifugu rubripes) as a test model, we propose a new strategy for ultrahigh-density genetic linkage map construction using low-coverage whole-genome sequencing of a haploid/doubled haploid (H/DH) population without above requirements. Low-coverage (≈1×) whole-genome sequencing data of 165 DH individuals were used for de novo assembly and further performed single nucleotide polymorphisms (SNPs) calling, resulting in the identification of 1,070,601 SNPs. Based on SNP genotypes and de novo assembly, genotypes were associated with short DNA segments and an ultrahigh-density linkage map was constructed containing information of 802,277 SNPs in 3090 unique positions. Comparative analyses showed near-perfect concordance between the present linkage map and the latest published torafugu genome (FUGU5). This strategy would facilitate ultrahigh-density linkage map construction in various sexually reproducing organisms for which H/DH populations can be generated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...