Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Cancer Sci ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527308

RESUMO

Overcoming resistance to immune checkpoint inhibitors is an important issue in patients with non-small-cell lung cancer (NSCLC). Transcriptome analysis shows that adenocarcinoma can be divided into three molecular subtypes: terminal respiratory unit (TRU), proximal proliferative (PP), and proximal inflammatory (PI), and squamous cell carcinoma (LUSQ) into four. However, the immunological characteristics of these subtypes are not fully understood. In this study, we investigated the immune landscape of NSCLC tissues in molecular subtypes using a multi-omics dataset, including tumor-infiltrating leukocytes (TILs) analyzed using flow cytometry, RNA sequences, whole exome sequences, metabolomic analysis, and clinicopathologic findings. In the PI subtype, the number of TILs increased and the immune response in the tumor microenvironment (TME) was activated, as indicated by high levels of tertiary lymphoid structures, and high cytotoxic marker levels. Patient prognosis was worse in the PP subtype than in other adenocarcinoma subtypes. Glucose transporter 1 (GLUT1) expression levels were upregulated and lactate accumulated in the TME of the PP subtype. This could lead to the formation of an immunosuppressive TME, including the inactivation of antigen-presenting cells. The TRU subtype had low biological malignancy and "cold" tumor-immune phenotypes. Squamous cell carcinoma (LUSQ) did not show distinct immunological characteristics in its respective subtypes. Elucidation of the immune characteristics of molecular subtypes could lead to the development of personalized immune therapy for lung cancer. Immune checkpoint inhibitors could be an effective treatment for the PI subtype. Glycolysis is a potential target for converting an immunosuppressive TME into an antitumorigenic TME in the PP subtype.

2.
Sci Rep ; 14(1): 429, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172491

RESUMO

Inflammatory factors in the peripheral blood, such as the C-reactive protein level and neutrophil-to-lymphocyte ratio (NLR), are prognostic markers in multiple types of cancer, including non-small cell lung cancer (NSCLC). However, the association between inflammatory factors and prognosis based on histological types has not been adequately reported. In addition, the relationship between these factors and the immune condition of the tumor microenvironment (TME) is unclear. In this single center, retrospective study, we first investigated the relationship between preoperative inflammatory markers and clinical outcomes in 176 patients with NSCLC who underwent surgery. Lung adenocarcinoma (LUAD) showed no significant prognostic marker, whereas for lung squamous cell carcinoma (LUSC), a multivariate analysis showed that a high NLR was significantly associated with postoperative recurrence. In LUSC patients, the median time of postoperative recurrence-free survival in patients with a low NLR was longer than that in patients with a high NLR. We then compared the tumor-infiltrating lymphocyte (TIL) profile with inflammatory markers in peripheral blood and found that the NLR was negatively correlated with the frequencies of T cells and B cells in LUSC tissues. Thus, the NLR is a useful predictive biomarker for postoperative recurrence and may reflect the immune condition of the TME in LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Prognóstico , Neoplasias Pulmonares/patologia , Neutrófilos/patologia , Estudos Retrospectivos , Microambiente Tumoral , Estadiamento de Neoplasias , Linfócitos/patologia , Carcinoma de Células Escamosas/patologia , Células Epiteliais/patologia
3.
MAbs ; 15(1): 2253570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682072

RESUMO

Therapeutic antibodies sometimes elicit anti-drug antibodies (ADAs) that can affect efficacy and safety. Engineered antibodies that contain artificial amino acid sequences are potentially highly immunogenic, but this is currently difficult to predict. Therefore, it is important to efficiently assess immunogenicity during the development of complex antibody-based formats. Here, we present an in vitro peripheral blood mononuclear cell-based assay that can be used to assess immunogenicity potential within 3 days. This method involves examining the frequency and function of interleukin (IL)-2-secreting CD4+ T cells induced by therapeutic antibodies. IL-2-secreting CD4+ T cells seem to be functionally relevant to the immunogenic potential due to their proliferative activity and the expression of several cytokines. The rates of the donors responding to low and high immunogenic proteins, mAb1, and keyhole limpet hemocyanin were 1.3% and 93.5%, respectively. Seven antibodies with known rates of immunogenicity (etanercept, emicizumab, abciximab, romosozumab, blosozumab, humanized anti-human A33 antibody, and bococizumab) induced responses in 1.9%, 3.8%, 6.4%, 10.0%, 29.2%, 43.8%, and 89.5% of donors, respectively. These data are comparable with ADA incidences in clinical settings. Our results show that this assay can contribute to the swift assessment and mechanistic understanding of the immunogenicity of therapeutic antibodies.


Assuntos
Interleucina-2 , Linfócitos T , Interleucina-2/farmacologia , Leucócitos Mononucleares/metabolismo , Citocinas/metabolismo , Linfócitos T CD4-Positivos
4.
Cancer Res Commun ; 3(6): 1026-1040, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377611

RESUMO

Resistance to immune checkpoint blockade remains challenging in patients with non-small cell lung cancer (NSCLC). Tumor-infiltrating leukocyte (TIL) quantity, composition, and activation status profoundly influence responsiveness to cancer immunotherapy. This study examined the immune landscape in the NSCLC tumor microenvironment by analyzing TIL profiles of 281 fresh resected NSCLC tissues. Unsupervised clustering based on numbers and percentages of 30 TIL types classified adenocarcinoma (LUAD) and squamous cell carcinoma (LUSQ) into the cold, myeloid cell-dominant, and CD8+ T cell-dominant subtypes. These were significantly correlated with patient prognosis; the myeloid cell subtype had worse outcomes than the others. Integrated genomic and transcriptomic analyses, including RNA sequencing, whole-exome sequencing, T-cell receptor repertoire, and metabolomics of tumor tissue, revealed that immune reaction-related signaling pathways were inactivated, while the glycolysis and K-ras signaling pathways activated in LUAD and LUSQ myeloid cell subtypes. Cases with ALK and ROS1 fusion genes were enriched in the LUAD myeloid subtype, and the frequency of TERT copy-number variations was higher in LUSQ myeloid subtype than in the others. These classifications of NSCLC based on TIL status may be useful for developing personalized immune therapies for NSCLC. Significance: The precise TIL profiling classified NSCLC into novel three immune subtypes that correlates with patient outcome, identifying subtype-specific molecular pathways and genomic alterations that should play important roles in constructing subtype-specific immune tumor microenvironments. These classifications of NSCLC based on TIL status are useful for developing personalized immune therapies for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/metabolismo , Linfócitos do Interstício Tumoral , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Microambiente Tumoral/genética
5.
Photochem Photobiol Sci ; 22(7): 1591-1601, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36943649

RESUMO

Diadumene lineata is a colorful sea anemone with orange stripe tissue of the body column and plain tentacles with red lines. We subjected Diadumene lineata to expression cloning and obtained genes encoding orange (OFP: DiLiFP561) and red fluorescent proteins (RFPs: DiLiFP570 and DiLiFP571). These proteins formed obligatory tetramers. All three proteins showed bright fluorescence with the brightness of 58.3 mM-1·cm-1 (DiLiFP561), 43.9 mM-1·cm-1 (DiLiFP570), and 31.2 mM-1·cm-1 (DiLiFP571), which were equivalent to that of commonly used red fluorescent proteins. Amplitude-weighted average fluorescence lifetimes of DiLiFP561, DiLiFP570 and DiLiFP571 were determined as 3.7, 3.6 and 3.0 ns. We determined a crystal structure of DiLiFP570 at 1.63 Å resolution. The crystal structure of DiLiFP570 revealed that the chromophore has an extended π-conjugated structure similar to that of DsRed. Most of the amino acid residues surrounding the chromophore were common between DiLiFP570 and DiLiFP561, except M159 of DiLiFP570 (Lysine in DiLiFP561), which is located close to the chromophore hydroxyl group. Interestingly, a similar K-to-M substitution has been reported in a red-shifted variant of DsRed (mRFP1). It is a striking observation that the naturally evolved color-change variants are consistent with the mutation induced via protein engineering processes. The newly cloned proteins are promising as orange and red fluorescent markers for imaging with long fluorescence lifetime.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/química , Anêmonas-do-Mar/metabolismo , Proteínas Luminescentes/química , Engenharia de Proteínas , Clonagem Molecular , Mutação , Corantes
6.
Blood Adv ; 7(8): 1577-1593, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269819

RESUMO

Aberrant expression of ecotropic viral integration site-1 (EVI1+) is associated with very poor outcomes in acute myeloid leukemia (AML), mechanisms of which are only partially understood. Using the green fluorescent protein reporter system to monitor EVI1 promoter activity, we demonstrated that Evi1high KMT2A-MLLT1-transformed AML cells possess distinct features from Evi1low cells: the potential for aggressive disease independent of stem cell activity and resistance to cytotoxic chemotherapy, along with the consistent gene expression profiles. RNA sequencing and chromatin immunoprecipitation sequencing in EVI1-transformed AML cells and normal hematopoietic cells combined with functional screening by cell proliferation-related short hairpin RNAs revealed that the erythroblast transformation-specific transcription factor ERG (E26 transformation-specific [ETS]-related gene) and cyclin D1 were downstream targets and therapeutic vulnerabilities of EVI1+ AML. Silencing Erg in murine EVI1+ AML models severely impaired cell proliferation, chemoresistance, and leukemogenic capacity. Cyclin D1 is also requisite for efficient EVI1-AML development, associated with gene expression profiles related to chemokine production and interferon signature, and T- and natural killer-cell exhaustion phenotype, depending on the interferon gamma (IFN-γ)/STAT1 pathway but not on CDK4/CDK6. Inhibiting the IFN-γ/STAT1 pathway alleviated immune exhaustion and impaired EVI1-AML development. Overexpression of EVI1 and cyclin D1 was associated with IFN-γ signature and increased expression of chemokines, with increased exhaustion molecules in T cells also in human AML data sets. These data collectively suggest that ERG and cyclin D1 play pivotal roles in the biology of EVI1+ AML, where ERG contributes to aggressive disease nature and chemoresistance, and cyclin D1 leads to IFN-γ signature and exhausted T-cell phenotypes, which could potentially be targeted.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Ciclina D1/genética , Proto-Oncogenes , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Regulador Transcricional ERG/genética , Fatores de Transcrição/genética
7.
Cell Mol Life Sci ; 79(11): 540, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197517

RESUMO

Glycine receptors (GlyRs) are ligand-gated pentameric chloride channels in the central nervous system. GlyR-α3 is a possible target for chronic pain treatment and temporal lobe epilepsy. Alternative splicing into K or L variants determines the subcellular fate and function of GlyR-α3, yet it remains to be shown whether its different splice variants can functionally co-assemble, and what the properties of such heteropentamers would be. Here, we subjected GlyR-α3 to a combined fluorescence microscopy and electrophysiology analysis. We employ masked Pearson's and dual-color spatiotemporal correlation analysis to prove that GlyR-α3 splice variants heteropentamerize, adopting the mobility of the K variant. Fluorescence-based single-subunit counting experiments revealed a variable and concentration ratio dependent hetero-stoichiometry. Via cell-attached single-channel electrophysiology we show that heteropentamers exhibit currents in between those of K and L variants. Our data are compatible with a model where α3 heteropentamerization fine-tunes mobility and activity of GlyR-α3 channels, which is important to understand and tackle α3 related diseases.


Assuntos
Receptores de Glicina , Transmissão Sináptica , Processamento Alternativo/genética , Ligantes , Mutação , Receptores de Glicina/genética
8.
J Pathol Inform ; 13: 100120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268108

RESUMO

Assessment of the estrous cycle of mature female mammals is an important component of verifying the efficacy and safety of drug candidates. The common pathological approach of relying on expert observation has several drawbacks, including laborious work and inter-viewer variability. The recent advent of image recognition technologies using deep learning is expected to bring substantial benefits to such pathological assessments. We herein propose 2 distinct deep learning-based workflows to classify the estrous cycle stage from tissue images of the uterine horn and vagina, respectively. These constructed models were able to classify the estrous cycle stages with accuracy comparable with that of expert pathologists. Our digital workflows allow efficient pathological assessments of the estrous cycle stage in rats and are thus expected to accelerate drug research and development.

9.
J Clin Exp Hematop ; 62(4): 217-221, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36261334

RESUMO

Autoimmune pancytopenia is rarely seen with Hodgkin lymphoma, and only one pediatric case of pancytopenia after autologous hematopoietic stem cell transplantation (HSCT) has been reported. We herein report a case of autoimmune pancytopenia that developed after autologous HSCT for nodular lymphocyte predominant Hodgkin lymphoma (NLPHL). A 56-year-old Japanese woman underwent autologous HSCT for NLPHL. She developed autoimmune pancytopenia seven months after autologous HSCT. In this case, PSL was effective, and the blood cell counts normalized completely. However, the patient suffered from a fatal infection, probably because of immunosuppression caused by prolonged administration of PSL, as well as a history of several chemotherapies and autologous HSCT. To our knowledge, this is the first adult case of autoimmune pancytopenia after autologous HSCT for Hodgkin lymphoma. To further validate the optimal treatment strategy for autoimmune cytopenia after autologous HSCT, more cases are necessary.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doença de Hodgkin , Pancitopenia , Adulto , Feminino , Humanos , Criança , Pessoa de Meia-Idade , Doença de Hodgkin/terapia , Doença de Hodgkin/patologia , Pancitopenia/etiologia , Pancitopenia/terapia , Recidiva Local de Neoplasia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante Autólogo
10.
Methods Mol Biol ; 2525: 207-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836070

RESUMO

Bioluminescence resonance energy transfer (BRET) has gained impetus to monitor protein interactions in proximity. BRET involves the energy transfer from a bioluminescent donor (luciferases) to a fluorescent acceptor. Since bioluminescence is an intrinsic phenomenon, BRET excludes the need for external illumination and serves as a powerful alternative to fluorescence-based systems. However, BRET has not been widely adopted for single-cell imaging applications, mainly due to the low signal output resulting in poor signal-to-noise ratio. In this chapter, we describe a protocol to optimize spatiotemporal BRET imaging by adopting fluorescent HaloTag acceptors, adapting cell culture conditions and microscopic setup.


Assuntos
Diagnóstico por Imagem , Medições Luminescentes , Transferência de Energia , Transferência Ressonante de Energia de Fluorescência/métodos , Hidrolases , Luciferases/metabolismo , Medições Luminescentes/métodos
11.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35417559

RESUMO

Horizontal transfer (HT) of genes between multicellular animals, once thought to be extremely rare, is being more commonly detected, but its global geographic trend and transfer mechanism have not been investigated. We discovered a unique HT pattern of Bovine-B (BovB) LINE retrotransposons in vertebrates, with a bizarre transfer direction from predators (snakes) to their prey (frogs). At least 54 instances of BovB HT were detected, which we estimate to have occurred across time between 85 and 1.3 Ma. Using comprehensive transcontinental sampling, our study demonstrates that BovB HT is highly prevalent in one geographical region, Madagascar, suggesting important regional differences in the occurrence of HTs. We discovered parasite vectors that may plausibly transmit BovB and found that the proportion of BovB-positive parasites is also high in Madagascar where BovB thus might be physically transported by parasites to diverse vertebrates, potentially including humans. Remarkably, in two frog lineages, BovB HT occurred after migration from a non-HT area (Africa) to the HT hotspot (Madagascar). These results provide a novel perspective on how the prevalence of parasites influences the occurrence of HT in a region, similar to pathogens and their vectors in some endemic diseases.


Assuntos
Transferência Genética Horizontal , Parasitos , Animais , Bovinos , Geografia , Parasitos/genética , Filogenia , Comportamento Predatório , Retroelementos , Vertebrados/genética
12.
Exp Hematol ; 109: 45-54, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35245608

RESUMO

Somatic mutation of DNMT3A (DNA methyltransferase 3 alpha) is implicated in the development of a wide range of hematological disorders, including clonal hematopoiesis of indeterminate potential. To elucidate the functional roles of endogenous levels of a DNMT3A R882 mutant, we generated a novel Dnmt3a R878C conditional knock-in mouse model. In contrast to viable heterozygotes, mice homozygous for the Dnmt3a R878C mutation in the hematopoietic system were not viable (Dnmt3a R878C is homologous to human DNMT3A R882C). Hematopoietic cell-specific heterozygous expression of Dnmt3a R878C led to significant expansion of adult quiescent hematopoietic stem cells (HSCs); however, these mice had no hematological malignancies. The expanding HSC population in heterozygous Dnmt3a R878C knock-in mice had an accumulation of G0-phase cells. In contrast to aberrantly enhanced self-renewal capacity in vitro, heterozygous Dnmt3a R878C knock-in HSCs had no competitive repopulating advantage in vivo over wild-type HSCs. Considering the capacity of the heterozygous Dnmt3a R878C mutant for HSC pool expansion, our Dnmt3a R878C knock-in mouse line is a useful platform on which to dissect the pathophysiology of clonal hematopoiesis. This mouse line can also help to elucidate the biological and molecular actions of DNMT3A mutations in the malignant transformation of normal HSCs.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Hematopoese , Animais , Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Heterozigoto , Camundongos
14.
Blood Adv ; 6(5): 1585-1597, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-34521112

RESUMO

Although JAK1/2 inhibition is effective in alleviating symptoms of myelofibrosis (MF), it does not result in the eradication of MF clones, which can lead to inhibitor-resistant clones emerging during the treatment. Here, we established induced pluripotent stem cells (iPSCs) derived from MF patient samples (MF-iPSCs) harboring JAK2 V617F, CALR type 1, or CALR type 2 mutations. We demonstrated that these cells faithfully recapitulate the drug sensitivity of the disease. These cells were used for chemical screening, and calcium/calmodulin-dependent protein kinase 2 (CAMK2) was identified as a promising therapeutic target. MF model cells and mice induced by MPL W515L, another type of mutation recurrently detected in MF patients, were used to elucidate the therapeutic potential of CAMK2 inhibition. CAMK2 inhibition was effective against JAK2 inhibitor-sensitive and JAK2 inhibitor-resistant cells. Further research revealed CAMK2 γ subtype was important in MF model cells induced by MPL W515L. We showed that CAMK2G hetero knockout in the primary bone marrow cells expressing MPL W515L decreased colony-forming capacity. CAMK2G inhibition with berbamine, a CAMK2G inhibitor, significantly prolonged survival and reduced disease phenotypes, such as splenomegaly and leukocytosis in a MF mouse model induced by MPL W515L. We investigated the molecular mechanisms underlying the therapeutic effect of CAMK2G inhibition and found that CAMK2G is activated by MPL signaling in MF model cells and is an effector in the MPL-JAK2 signaling pathway in these cells. These results indicate CAMK2G plays an important role in MF, and CAMK2G inhibition may be a novel therapeutic strategy that overcomes resistance to JAK1/2 inhibition.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mielofibrose Primária , Animais , Células da Medula Óssea/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Humanos , Camundongos , Mutação , Fenótipo , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Receptores de Trombopoetina
15.
Gen Thorac Cardiovasc Surg ; 70(1): 96-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34709554

RESUMO

A 71-year-old female with type B3 thymoma developed severe aplastic anemia. Anti-thymocyte globulin was administered with glucocorticoids and cyclosporin A as the treatment for aplastic anemia. Computed tomography scan revealed that thymoma apparently shrank and remained without regrowth for at least 7 months. As previously reported, glucocorticoid has therapeutic effects on thymoma especially with abundant lymphocytes. Anti-thymocyte globulin also depletes peripheral lymphocytes, but its efficacy in the treatment of thymoma is unknown. Anti-thymocyte globulin and glucocorticoids may have cooperated with each other in reducing thymoma in our case. More cases should be accumulated to elucidate the effects of anti-thymocyte globulin on thymoma.


Assuntos
Anemia Aplástica , Timoma , Neoplasias do Timo , Idoso , Soro Antilinfocitário/uso terapêutico , Ciclosporina , Feminino , Humanos , Timoma/tratamento farmacológico , Neoplasias do Timo/tratamento farmacológico
16.
Cancer Sci ; 112(10): 4112-4126, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363719

RESUMO

Evi1 is a transcription factor essential for the development as well as progression of acute myeloid leukemia (AML) and high Evi1 AML is associated with extremely poor clinical outcome. Since targeting metabolic vulnerability is the emerging therapeutic strategy of cancer, we herein investigated a novel therapeutic target of Evi1 by analyzing transcriptomic, epigenetic, and metabolomic profiling of mouse high Evi1 leukemia cells. We revealed that Evi1 overexpression and Evi1-driven leukemic transformation upregulate transcription of gluconeogenesis enzyme Fbp1 and other pentose phosphate enzymes with interaction between Evi1 and the enhancer region of these genes. Metabolome analysis using Evi1-overexpressing leukemia cells uncovered pentose phosphate pathway upregulation by Evi1 overexpression. Suppression of Fbp1 as well as pentose phosphate pathway enzymes by shRNA-mediated knockdown selectively decreased Evi1-driven leukemogenesis in vitro. Moreover, pharmacological or shRNA-mediated Fbp1 inhibition in secondarily transplanted Evi1-overexpressing leukemia mouse significantly decreased leukemia cell burden. Collectively, targeting FBP1 is a promising therapeutic strategy of high Evi1 AML.


Assuntos
Frutose-Bifosfatase/metabolismo , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Via de Pentose Fosfato , Animais , Modelos Animais de Doenças , Progressão da Doença , Elementos Facilitadores Genéticos , Epigênese Genética , Frutose-Bifosfatase/antagonistas & inibidores , Frutose-Bifosfatase/genética , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/patologia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Via de Pentose Fosfato/genética , RNA Interferente Pequeno , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
17.
J Phys Chem Lett ; 12(31): 7466-7473, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339202

RESUMO

LSSmOrange is a fluorescent protein that exhibits a large energy gap between absorption and emission, which makes it a useful tool for multicolor bioimaging. This characteristic of LSSmOrange originates from excited-state proton transfer (ESPT): The neutral chromophore is predominantly present in the ground state while the bright fluorescence is emitted from the anionic excited state after ESPT. Interestingly, it was reported that this ESPT process follows bimodal dynamics, but its origin has not clearly been understood. We investigate ESPT of LSSmOrange using time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS) that provides femtosecond time-resolved Raman spectra. The results indicate that the bimodal ESPT dynamics originates from the structural heterogeneity of the chromophore. Species-associated Raman spectra obtained by spectral analysis based on singular value decomposition (SVD) suggest that cis and trans chromophores coexist in the ground state. It is considered that these two forms are photoexcited and undergo ESPT in parallel, resulting in the bimodal dynamics of ESPT in LSSmOrange.

18.
Nat Commun ; 12(1): 2541, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953187

RESUMO

Förster resonance energy transfer (FRET) between fluorescent proteins has become a common platform for designing genetically encoded biosensors. For live cell imaging, the acceptor-to-donor intensity ratio is most commonly used to readout FRET efficiency, which largely depends on the proximity between donor and acceptor. Here, we introduce an anisotropy-based mode of FRET detection (FADED: FRET-induced Angular Displacement Evaluation via Dim donor), which probes for relative orientation rather than proximity alteration. A key element in this technique is suppression of donor bleed-through, which allows measuring purer sensitized acceptor anisotropy. This is achieved by developing Geuda Sapphire, a low-quantum-yield FRET-competent fluorescent protein donor. As a proof of principle, Ca2+ sensors were designed using calmodulin as a sensing domain, showing sigmoidal dose response to Ca2+. By monitoring the anisotropy, a Ca2+ rise in living HeLa cells is observed upon histamine challenging. We conclude that FADED provides a method for quantifying the angular displacement via FRET.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Óptica/métodos , Anisotropia , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos
19.
Biophys J ; 119(10): 2127-2137, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33096081

RESUMO

Asymmetric dimer formation of epidermal growth factor receptor (EGFR) is crucial for EGF-induced receptor activation. Even though autophosphorylation is important for activation, its role remains elusive in the context of regulating dimers. In this study, employing overlapping time series analysis to raster image correlation spectroscopy (RICS), we observed time-dependent transient dynamics of EGFR dimerization and found EGFR kinase activity to be essential for dimerization. As a result of which, we hypothesized that phosphorylation could influence dimerization. Evaluating this point, we observed that one of the tyrosine residues (Y954) located in the C-terminal lobe of the activator kinase domain was important to potentiate dimerization. Functional imaging to monitor Ca2+ and ERK signals revealed a significant role of Y954 in influencing downstream signaling cascade. Crucial for stabilization of EGFR asymmetric dimer is a "latch" formed between kinase domains of the binding partners. Because Y954 is positioned adjacent to the latch binding region on the kinase domain, we propose that phosphorylation strengthened the latch interaction. On the contrary, we identified that threonine phosphorylation (T669) in the latch domain negatively regulated EGFR dimerization and the downstream signals. Overall, we have delineated the previously anonymous role of phosphorylation at the latch interface of kinase domains in regulating EGFR dimerization.


Assuntos
Receptores ErbB , Transdução de Sinais , Dimerização , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fosforilação , Tirosina/metabolismo
20.
Elife ; 92020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32631487

RESUMO

γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer's disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting 'hotspots' or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Presenilina-1/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Fibroblastos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia , Presenilina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...