Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
FEBS Lett ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955545

RESUMO

The poliovirus (PV) enters the central nervous system (CNS) via the bloodstream, suggesting the existence of a mechanism to cross the blood-brain barrier. Here, we report that PV capsid proteins (VP1 and VP3) can penetrate cells, with VP3 being more invasive. Two independent parts of VP3 are responsible for this function. Both peptides can penetrate human umbilical cord vascular endothelial cells, and one peptide of VP3 could also penetrate peripheral blood mononuclear cells. In an in vitro blood-brain barrier model using rat-derived astrocytes, pericytes, and endothelial cells, both peptides were observed to traverse from the blood side to the brain side at 6 h after administration. These results provide insights into the molecular mechanisms underlying PV invasion into the CNS.

2.
Front Microbiol ; 15: 1359402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426062

RESUMO

Human immunodeficiency virus (HIV) 1 infection is known to cause gut microbiota dysbiosis. Among the causes is the direct infection of HIV-1 in gut-resident CD4+ T cells, causing a cascade of phenomena resulting in the instability of the gut mucosa. The effect of HIV infection on gut microbiome dysbiosis remains unresolved despite antiretroviral therapy. Here, we show the results of a longitudinal study of microbiome analysis of people living with HIV (PLWH). We contrasted the diversity and composition of the microbiome of patients with HIV at the first and second time points (baseline_case and six months later follow-up_case, respectively) with those of healthy individuals (baseline_control). We found that despite low diversity indices in the follow-up_case, the abundance of some genera was recovered but not completely, similar to baseline_control. Some genera were consistently in high abundance in PLWH. Furthermore, we found that the CD4+ T-cell count and soluble CD14 level were significantly related to high and low diversity indices, respectively. We also found that the abundance of some genera was highly correlated with clinical features, especially with antiretroviral duration. This includes genera known to be correlated with worse HIV-1 progression (Achromobacter and Stenotrophomonas) and a genus associated with gut protection (Akkermansia). The fact that a protector of the gut and genera linked to a worse progression of HIV-1 are both enriched may signify that despite the improvement of clinical features, the gut mucosa remains compromised.

3.
BMC Microbiol ; 24(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172680

RESUMO

BACKGROUND: People living with HIV (PLWH) with chronic inflammation may have an increasing risk for coronavirus disease 2019 (COVID-19) severity; however, the impact of their gut microbiota on COVID-19 is not fully elucidated. Here, we analyzed the temporal changes in the gut microbiota composition of hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected PLWH (PLWH-CoV) and their correlation with COVID-19 severity. RESULT: The 16S rRNA analysis results using stool samples (along the timeline from disease onset) from 12 hospitalized PLWH-CoV, whose median CD4 + T cell count was 671 cells/µl, were compared to those of 19 healthy people and 25 PLWH. Bacterial diversity in PLWH-CoV is not significantly different from that of healthy people and SARS-CoV-2 non-infected PLWH, but a significant difference in the microbiota diversity was observed in the classification according to the disease severity. Immediately after the disease onset, remarkable changes were observed in the gut microbiota of PLWH-CoV, and the changing with a decrease in some short-chain fatty acid-producing bacteria and an increase in colitis-related pathobiont. In the second week after disease onset, relative amounts of specific bacteria distinguished between disease severity. One month after the disease onset, dysbiosis of the gut microbiota persisted, and the number of Enterobacteriaceae, mainly Escherichia-Shigella, which is potentially pathogenic, increased and were enriched in patients who developed post-acute sequelae of COVID-19 (PASC). CONCLUSION: The changes in the gut microbiota associated with SARS-CoV-2 infection observed in PLWH in this study indicated a persistent decrease in SCFA-producing bacteria and an intestinal environment with an increase in opportunistic pathogens associated with enteritis. This report demonstrates that the intestinal environment in PLWH tends to show delayed improvement even after COVID-19 recovery, and highlights the importance of the dysbiosis associated with SARS-CoV-2 infection as a potential factor in the COVID-19 severity and the PASC in PLWH.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Infecções por HIV , Humanos , HIV , COVID-19/complicações , Disbiose , RNA Ribossômico 16S/genética , SARS-CoV-2 , Infecções por HIV/complicações
4.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712596

RESUMO

Understanding the factors driving the spread and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the local, regional, national, and international levels is important in protecting against future pandemics. By exploring their viral genomes, we attempted to analyse the spread of SARS-CoV-2 and its evolutionary convergence in Kashiwa City, as an example of a representative commuter town in Japan. From September 2020 to January 2023, a total of 47,134 nasopharyngeal swab and saliva specimens were collected from patients in 47 local clinics and hospitals, covering the vast majority of healthcare facilities. All SARS-CoV-2-positive samples were subjected to whole genome sequencing. Based on the analysis of 5,536 identified genomes, all major strains were represented. Unique regional mutations were occasionally identified in each strain. Inspection of these mutations revealed that the overall base substitution rate increased with progressive waves of the pandemic, at an overall rate of 2.56 bases/year. Interestingly, the spread and evolutionary patterns appeared to be distinct between regions and between individual clinics. Further analysis of the synonymous base substitution rate showed that the speed of viral evolution accelerated coincident with the beginning of public vaccination. Comprehensive genomic epidemiological studies, as presented here, should be useful in precisely understanding the pandemic and preparing for possible future pandemics.

5.
Virol J ; 20(1): 146, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443091

RESUMO

BACKGROUND: The mucosa serves as the first defence against pathogens and facilitates the surveillance and elimination of symbiotic bacteria by mucosal immunity. Recently, the mRNA vaccine against SARS-CoV-2 has been demonstrated to induce secretory antibodies in the oral and nasal cavities in addition to a systemic immune response. However, the mechanism of induced immune stimulation effect on mucosal immunity and commensal bacteria profile remains unclear. METHODS: Here, we longitudinally analysed the changing nasal microbiota and both systemic and nasal immune response upon SARS-CoV-2 mRNA vaccination, and evaluated how mRNA vaccination influenced nasal microbiota in 18 healthy participants who had received the third BNT162b. RESULTS: The nasal S-RBD IgG level correlated significantly with plasma IgG levels until 1 month and the levels were sustained for 3 months post-vaccination. In contrast, nasal S-RBD IgA induction peaked at 1 month, albeit slightly, and correlated only with plasma IgA, but the induction level decreased markedly at 3 months post-vaccination. 16 S rRNA sequencing of the nasal microbiota post-vaccination revealed not an overall change, but a decrease in certain opportunistic bacteria, mainly Fusobacterium. The decrease in these bacteria was more pronounced in those who exhibited nasal S-RBD IgA induction, and those with higher S-RBD IgA induction had lower relative amounts of potentially pathogenic bacteria such as Pseudomonas pre-vaccination. In addition, plasma and mucosal S-RBD IgG levels correlated with decreased commensal pathogens such as Finegoldia. CONCLUSIONS: These findings suggest that the third dose of SARS-CoV-2 mRNA vaccination induced S-RBD antibodies in the nasal mucosa and may have stimulated mucosal immunity against opportunistic bacterial pathogens. This effect, albeit probably secondary, may be considered one of the benefits of mRNA vaccination. Furthermore, our data suggest that a cooperative function of mucosal and systemic immunity in the reduction of bacteria and provides a better understanding of the symbiotic relationship between the host and bacteria in the nasal mucosa.


Assuntos
COVID-19 , Cavidade Nasal , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Mucosa Nasal , Vacinação , Imunidade nas Mucosas , RNA Mensageiro , Imunoglobulina A , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
6.
BMC Public Health ; 23(1): 1051, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264375

RESUMO

BACKGROUND: The 95-95-95 UNAIDS global strategy was adapted to end the AIDS epidemic by 2030. The target is based on the premise that early detection of HIV-infected persons and linking them to treatment regardless of their CD4 counts will lead to sustained viral suppression. HIV testing strategies to increase uptake of testing in Western and Central Africa remain inadequate. Hence, a high proportion of people living with HIV in this region do not know their status. This report describes the implementation of a community based multi-disease health screening (also known as "Know Your Status" -KYS), as part of basic science research, in a way that contributed to achieving public health goals. METHODS: A community based multi-disease health screening was conducted in 7 communities within the Eastern region of Ghana between November 2017 and April 2018, to recruit and match HIV seronegative persons to HIV seropositive persons in a case-control HIV gut microbiota study. Health assessments included blood pressure, body mass index, blood sugar, Hepatitis B virus, syphilis, and HIV testing for those who consented. HIV seronegative participants who consented were consecutively enrolled in an ongoing HIV gut microbiota case-control study. Descriptive statistics (percentages) were used to analyze data. RESULTS: Out of 738 people screened during the exercise, 700 consented to HIV testing and 23 (3%) were HIV positive. Hepatitis B virus infection was detected in 4% (33/738) and Syphilis in 2% (17/738). Co-infection of HIV and HBV was detected in 4 persons. The HIV prevalence of 3% found in these communities is higher than both the national prevalence of 1.7% and the Eastern Regional prevalence of 2.7 in 2018. CONCLUSION: Community based multi-disease health screening, such as the one undertaken in our study could be critical for identifying HIV infected persons from the community and linking them to care. In the case of HIV, it will greatly contribute to achieving the first two 95s and working towards ending AIDS by 2030.


Assuntos
Infecções por HIV , Programas de Rastreamento , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Diagnóstico Precoce , Prevalência , Continuidade da Assistência ao Paciente , Programas de Rastreamento/métodos , Hepatite B/diagnóstico , Sífilis/diagnóstico , Estudos Transversais , Humanos , Masculino , Feminino , Adulto , Serviços de Saúde Comunitária , Teste de HIV , Coinfecção/epidemiologia , Gana/epidemiologia
7.
Gut Pathog ; 15(1): 14, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945059

RESUMO

BACKGROUND: Rifaximin is a poorly absorbed broad-spectrum antibiotic used for hepatic encephalopathy. Although increased Lactobacillaceae and decreased Bacteroidetes abundance are characteristic of hepatic encephalopathy, rifaximin does not dramatically alter the stool microbiota. As the antimicrobial effect of rifaximin increases by micellization with bile acids, we hypothesized that rifaximin alters the microbiota in the duodenum and jejunum, where the levels of bile acids are abundant. METHODS AND RESULTS: Eight-week-old BALB/c mice were injected with carbon tetrachloride (CCl4) intraperitoneally for 12 weeks to induce liver fibrosis. The mice were grouped into the control (n = 9), CCl4 (n = 13), and rifaximin group in which mice were treated with rifaximin for two weeks after CCl4 administration (n = 13). We analyzed the microbiota of the duodenum, jejunum, ileum, cecum, and stool using 16S ribosomal RNA gene analysis. The content of Lactobacillaceae, the most abundant bacterial family in the duodenum and small intestine, increased in the CCl4 group, especially in the jejunum (median 67.0% vs 87.8%, p = 0.03). Rifaximin significantly decreased Lactobacillaceae content in the duodenum (median 79.4% vs 19.0%, p = 0.006) and jejunum (median 87.8% vs 61.3%, p = 0.03), but not in the ileum, cecum, and stool. Bacteroidetes abundance tended to decrease on CCl4 administration and increased following rifaximin treatment in the duodenum and jejunum. S24_7, the most abundant family in Bacteroidetes, demonstrated a significant inverse correlation with Lactobacillaceae (duodenum, r = - 0.61, p < 0.001; jejunum, r = - 0.72, p < 0.001). In the ileum, cecum, and stool, the effect of rifaximin on the microbiota was minimal, with changes within the same phylum. The percentage of bacterial families, such as Lactobacillaceae and S24_7 in the duodenum and small intestine, did not correlate with that in the stool. CONCLUSIONS: The abundance of Lactobacillaceae increased in the jejunum of mice with CCl4-induced liver fibrosis, while rifaximin significantly reduced it in the duodenum and jejunum. Thus, rifaximin possibly exerts its effect by altering the duodenal and jejunal microbiota. Furthermore, changes in the duodenal and small intestinal microbiota were not associated with that of stool, suggesting that the analysis of stool microbiota is insufficient to evaluate upper intestinal microbiota.

8.
Sci Rep ; 13(1): 1935, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732528

RESUMO

SARS-CoV-2 continues to spread worldwide. Patients with COVID-19 show distinct clinical symptoms. Although many studies have reported various causes for the diversity of symptoms, the underlying mechanisms are not fully understood. Peripheral blood mononuclear cells from COVID-19 patients were collected longitudinally, and single-cell transcriptome and T cell receptor repertoire analysis was performed. Comparison of molecular features and patients' clinical information revealed that the proportions of cells present, and gene expression profiles differed significantly between mild and severe cases; although even among severe cases, substantial differences were observed among the patients. In one severely-infected elderly patient, an effective antibody response seemed to have failed, which may have caused prolonged viral clearance. Naïve T cell depletion, low T cell receptor repertoire diversity, and aberrant hyperactivation of most immune cell subsets were observed during the acute phase in this patient. Through this study, we provided a better understanding of the diversity of immune landscapes and responses. The information obtained from this study can help medical professionals develop personalized optimal clinical treatment strategies for COVID-19.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Leucócitos Mononucleares , Japão/epidemiologia , Análise de Célula Única , Receptores de Antígenos de Linfócitos T
9.
Trop Med Health ; 50(1): 81, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307880

RESUMO

Among western African countries, the Republic of Ghana has maintained an economic growth rate of 5% since the 1980s and is now categorized as a middle-income country. However, as with other developing countries, Ghana still has challenges in the effective implementation of surveillance for infectious diseases. Facing public health emergencies of international concern (PHEIC), it is crucial to establish a reliable sample transportation system to the referral laboratory. Previously, surveillance capacity in Ghana was limited based on Integrated Disease Surveillance and Response, and therefore the "Surveillance and Laboratory Support for Emerging Pathogens of Public Health Importance in Ghana (SLEP)" was introduced to strengthen diarrhea surveillance. The SLEP project started with a sentinel diarrhea survey supported by SATREPS/JICA in collaboration with National Public Health Reference Laboratory (NHPRL) and Noguchi Memorial Institute of Medicine (NMIMR). The base-line survey revealed the limited capacity to detect diarrhea pathogens and to transfer samples from health centers to NHPRL. The involvement of private clinic/hospital facilities into the surveillance network is also crucial to strengthen surveillance in Ghana. The strong and interactive relationship between the two top referral laboratories, NHPRL under the Ministry of Health NMIMR and under the Ministry of Education, enables Ghana Health Services and is critical for the rapid response against PHEIC. In future, we hope that the outcome of the SLEP surveillance project could contribute to building a surveillance network with more timely investigation and transfer of samples to referral labs.

10.
Front Microbiol ; 13: 973771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090108

RESUMO

Expanding access to effective antiretroviral therapy (ART) is a major tool for management of Human Immunodeficiency Virus (HIV) infection. However, rising levels of HIV drug-resistance have significantly hampered the anticipated success of ART in persons living with HIV (PLWH), particularly those from Africa. Though great strides have been made in Ghana toward achieving the UNAIDS "95-95-95" target, a substantial number of PLWH receiving ART have not attained viral suppression. This study investigated patterns of drug resistance mutations in ART naïve as well as ART-experienced PLWH receiving first-line regimen drugs from Ghana. In a cross-sectional study, blood samples were collected from HIV-1 infected adults (≥18 years) attending HIV/AIDS clinic at the Eastern Regional Hospital, Koforidua, Ghana from September to October 2017. Viral RNA isolated from plasma were subjected to genotypic drug resistance testing for Protease Inhibitors (PI), Reverse Transcriptase Inhibitors (RTI), and Integrase Strand Transfer Inhibitors (INSTI). A total of 95 (84 ART experienced, 11 ART naïve) HIV-1 infected participants were sampled in this study. Sixty percent (50/84) of the ART-experienced participants were controlling viremia (viral load < 1,000 copies/ml). Of the 95 patient samples, 32, 34, and 33 were successfully sequenced for protease, reverse-transcriptase, and integrase regions, respectively. The dominant HIV-1 subtypes detected were CRF02_AG (70%), and A3 (10%). Major drug resistance associated mutations were only detected for reverse transcriptase inhibitors. The predominant drug resistance mutations were against nucleos(t)ide reverse transcriptase inhibitors (NRTI)-M184V/I and non-nucleos(t)ide reverse transcriptase inhibitors (NNRTI)-K103N. In the ART-experienced group, M184V/I and K103N were detected in 54% (15/28) and 46% (13/28) of individuals, respectively. Both mutations were each detected in 33% (2/6) of ART naïve individuals. Multiclass resistance to NRTI and NNRTI was detected in 57% of ART-experienced individuals and two ART naïve individuals. This study reports high-level resistance to NNRTI-based antiretroviral therapy in PLWH in Ghana. However, the absence of major PI and INSTI associated-mutations is a good signal that the current WHO recommendation of Dolutegravir in combination with an NRTI backbone will yield maximum benefits as first-line regimen for PLWH in Ghana.

11.
PLoS One ; 17(6): e0269390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35653364

RESUMO

Polymorphisms in human leukocyte antigen (HLA) class I loci are known to have a great impact on disease progression in HIV-1 infection. Prevailing HIV-1 subtypes and HLA genotype distribution are different all over the world, and the HIV-1 and host HLA interaction could be specific to individual areas. Data on the HIV-1 and HLA interaction have been accumulated in HIV-1 subtype B- and C-predominant populations but not fully obtained in West Africa where HIV-1 subtype CRF02_AG is predominant. In the present study, to obtain accurate HLA typing data for analysis of HLA association with disease progression in HIV-1 infection in West African populations, HLA class I (HLA-A, -B, and -C) four-digit allele typing was performed in treatment-naïve HIV-1 infected individuals in Ghana (n = 324) by a super high-resolution single-molecule sequence-based typing (SS-SBT) using next-generation sequencing. Comparison of the SS-SBT-based data with those obtained by a conventional sequencing-based typing (SBT) revealed incorrect assignment of several alleles by SBT. Indeed, HLA-A*23:17, HLA-B*07:06, HLA-C*07:18, and HLA-C*18:02 whose allele frequencies were 2.5%, 0.9%, 4.3%, and 3.7%, respectively, were not determined by SBT. Several HLA alleles were associated with clinical markers, viral load and CD4+ T-cell count. Of note, the impact of HLA-B*57:03 and HLA-B*58:01, known as protective alleles against HIV-1 subtype B and C infection, on clinical markers was not observed in our cohort. This study for the first time presents SS-SBT-based four-digit typing data on HLA-A, -B, and -C alleles in Ghana, describing impact of HLA on viral load and CD4 count in HIV-1 infection. Accumulation of these data would facilitate high-resolution HLA genotyping, contributing to our understanding of the HIV-1 and host HLA interaction in Ghana, West Africa.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Alelos , Progressão da Doença , Gana , Soropositividade para HIV/genética , HIV-1/genética , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos
12.
Front Microbiol ; 13: 894319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663873

RESUMO

Diarrheal disease remains a major global health problem particularly in children under 5 years and the emergence of antibiotic-resistant strains of causative pathogens could slow control efforts, particularly in settings where treatment options are limited. This surveillance study conducted in Ghana aimed to determine the prevalence and antimicrobial susceptibility profile of diarrhea-causing bacteria. This was a cross-sectional study carried out in five health facilities in the Ga West Municipality of Ghana between 2017 and 2021. Diarrheic stool samples from patients were collected and cultured on standard differential/selective media and isolates identified by standard biochemical tests, MALDI-TOF assay, and serological analysis. The antibiogram was determined using Kirby-Bauer disk diffusion and Microscan autoScan4 MIC panels which were used for extended-spectrum beta-lactamase (ESBL) detection. Bacteria were isolated from 97.5% (772/792) of stool samples, and 167 of the isolates were diarrheagenic and met our inclusion criteria for antimicrobial resistance (AMR) analysis. These included Escherichia coli (49.1%, 82/167), Salmonella species (23.9%, 40/167), Vibrio species (16.8%, 28/167), and Shigella species (10.2%, 17/167). Among 24 Vibrio species, we observed resistances to cefotaxime (21/24, 87.5%), ceftriaxone (20/24, 83.3%), and ciprofloxacin (6/24, 25%), including four multi-drug resistant isolates. All 13 Vibrio parahaemolyticus isolates were resistant to cefazolin. All 17 Shigella isolates were resistant to tetracycline with resistance to shigellosis drugs such as norfloxacin and ciprofloxacin. Salmonella isolates were highly susceptible to norfloxacin (40/40, 100%) and tetracycline (12/34, 35%). Two ESBL-producing E. coli were also identified with marked susceptibility to gentamicin (66/72, 91.7%) and amikacin (57/72, 79.2%) prescribed in the treatment of E. coli infections. This study showed the different bacteria implicated in diarrhea cases in Ghana and the need for differential diagnoses for better treatment outcomes. Escherichia coli, Shigella, Salmonella, and Vibrio have all been implicated in diarrhea cases in Ghana. The highest prevalence was E. coli and Salmonella with Shigella the least prevalent. Resistance to commonly used drugs found in these isolates may render bacteria infection treatment in the near future nearly impossible. Routine antimicrobial susceptibility testing, effective monitoring, and nationwide surveillance of AMR pathogens should be implemented to curb the increase of antimicrobial resistance in Ghana.

13.
Viruses ; 14(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35632692

RESUMO

Viral infections are influenced by various microorganisms in the environment surrounding the target tissue, and the correlation between the type and balance of commensal microbiota is the key to establishment of the infection and pathogenicity. Some commensal microorganisms are known to resist or promote viral infection, while others are involved in pathogenicity. It is also becoming evident that the profile of the commensal microbiota under normal conditions influences the progression of viral diseases. Thus, to understand the pathogenesis underlying viral infections, it is important to elucidate the interactions among viruses, target tissues, and the surrounding environment, including the commensal microbiota, which should have different relationships with each virus. In this review, we outline the role of microorganisms in viral infections. Particularly, we focus on gaining an in-depth understanding of the correlations among viral infections, target tissues, and the surrounding environment, including the commensal microbiota and the gut virome, and discussing the impact of changes in the microbiota (dysbiosis) on the pathological progression of viral infections.


Assuntos
Microbioma Gastrointestinal , Microbiota , Viroses , Vírus , Disbiose , Humanos
14.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383111

RESUMO

Immune responses are different between individuals and personal health histories and unique environmental conditions should collectively determine the present state of immune cells. However, the molecular systems underlying such heterogeneity remain elusive. Here, we conducted a systematic time-lapse single-cell analysis, using 171 single-cell libraries and 30 mass cytometry datasets intensively for seven healthy individuals. We found substantial diversity in immune-cell profiles between different individuals. These patterns showed daily fluctuations even within the same individual. Similar diversities were also observed for the T-cell and B-cell receptor repertoires. Detailed immune-cell profiles at healthy statuses should give essential background information to understand their immune responses, when the individual is exposed to various environmental conditions. To demonstrate this idea, we conducted the similar analysis for the same individuals on the vaccination of influenza and SARS-CoV-2. In fact, we detected distinct responses to vaccines between individuals, although key responses are common. Single-cell immune-cell profile data should make fundamental data resource to understand variable immune responses, which are unique to each individual.


Assuntos
COVID-19 , Análise de Célula Única , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
15.
Microbiol Spectr ; 10(2): e0168921, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35254122

RESUMO

The role of the intestinal microbiota in coronavirus disease 2019 (COVID-19) is being elucidated. Here, we analyzed the temporal changes in microbiota composition and the correlation between inflammation biomarkers/cytokines and microbiota in hospitalized COVID-19 patients. We obtained stool specimens, blood samples, and patient records from 22 hospitalized COVID-19 patients and performed 16S rRNA metagenomic analysis of stool samples over the course of disease onset compared to 40 healthy individual stool samples. We analyzed the correlation between the changes in the gut microbiota and plasma proinflammatory cytokine levels. Immediately after admission, differences in the gut microbiota were observed between COVID-19 patients and healthy subjects, mainly including enrichment of the classes Bacilli and Coriobacteriia and decrease in abundance of the class Clostridia. The bacterial profile continued to change throughout the hospitalization, with a decrease in short-chain fatty acid-producing bacteria including Faecalibacterium and an increase in the facultatively anaerobic bacteria Escherichia-Shigella. A consistent increase in Eggerthella belonging to the class Coriobacteriia was observed. The abundance of the class Clostridia was inversely correlated with interferon-γ level and that of the phylum Actinobacteria, which was enriched in COVID-19, and was positively correlated with gp130/sIL-6Rb levels. Dysbiosis was continued even after 21 days from onset. The intestines tended to be an aerobic environment in hospitalized COVID-19 patients. Because the composition of the gut microbiota correlates with the levels of proinflammatory cytokines, this finding emphasizes the need to understand how pathology is related to the temporal changes in the specific gut microbiota observed in COVID-19 patients. IMPORTANCE There is growing evidence that the commensal microbiota of the gastrointestinal and respiratory tracts regulates local and systemic inflammation (gut-lung axis). COVID-19 is primarily a respiratory disease, but the involvement of microbiota changes in the pathogenesis of this disease remains unclear. The composition of the gut microbiota of patients with COVID-19 changed over time during hospitalization, and the intestines tended to be an aerobic environment in hospitalized COVID-19 patients. These changes in gut microbiota may induce increased intestinal permeability, called leaky gut, allowing bacteria and toxins to enter the circulatory system and further aggravate the systemic inflammatory response. Since gut microbiota composition correlates with levels of proinflammatory cytokines, this finding highlights the need to understand how pathology relates to the gut environment, including the temporal changes in specific gut microbiota observed in COVID-19 patients.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Bactérias/genética , Citocinas , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Hospitalização , Humanos , Inflamação , RNA Ribossômico 16S/genética
16.
Hepatol Res ; 52(3): 227-234, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34825436

RESUMO

AIM: After the hepatitis A virus (HAV) outbreak among men who have sex with men (MSM) around 2018, the importance of HAV vaccination was emphasized, especially for MSM-living with human immunodeficiency virus (MSM-LWHIV). Aimmugen® is licensed and distributed exclusively in Japan. While administration of three doses is recommended, 85% of recipients in the general population were reported to acquire seroprotection after the second dose. In this study, we evaluated the efficacy of two or three vaccine doses along with predictors associated with the response to Aimmugen® in MSM-LWHIV. METHODS: We retrospectively examined anti-HA-IgG titers of MSM-LWHIV vaccinated with Aimmugen® in our hospital. Patients' data were collected from medical records. RESULTS: Between January 2018 and October 2019, 141 subjects whose median age was 46 years old, were examined. All the subjects were on antiretroviral therapy (ART) and the median CD4 count was 615/µL. The acquisition rate of protectable anti-HA-IgG titers after the second and third dose was 71.1% and 98.6%, respectively. In 114 subjects whose anti-HA-IgG titers were tested after the second-dose, factors significantly associated with better response were prolonged ART duration and higher CD4 count. The titers of anti-HA-IgG after the third dose were higher in those who became seropositive after the second-dose than those who did not. CONCLUSIONS: Three-dose of Aimmugen® for MSM-LWHIV was effective while two-dose was less effective compared to non-HIV-infected people. People-LWHIV with shorter duration of ART and lesser CD4 cell count achieved lower titers of anti-HA-IgG and might require an additional vaccination.

17.
Viruses ; 13(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696531

RESUMO

Hepatitis A virus (HAV) causes transient acute infection, and little is known of viral shedding via the duodenum and into the intestinal environment, including the gut microbiome, from the period of infection until after the recovery of symptoms. Therefore, in this study, we aimed to comprehensively observe the amount of virus excreted into the intestinal tract, the changes in the intestinal microbiome, and the level of inflammation during the healing process. We used blood and stool specimens from patients with human immunodeficiency virus who were infected with HAV during the HAV outbreak in Japan in 2018. Moreover, we observed changes in fecal HAV RNA and quantified the plasma cytokine level and gut microbiome by 16S rRNA analysis from clinical onset to at least 6 months after healing. HAV was detected from clinical onset up to a period of more than 150 days. Immediately after infection, many pro-inflammatory cytokines were elicited, and some cytokines showed different behaviors. The intestinal microbiome changed significantly after infection (dysbiosis), and the dysbiosis continued for a long time after healing. These observations suggest that the immunocompromised state is associated with prolonged viral shedding into the intestinal tract and delayed recovery of the intestinal environment.


Assuntos
Disbiose/virologia , Fezes/virologia , Hepatite A/complicações , Adulto , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Hepatite A/fisiopatologia , Hepatite A/virologia , Vírus da Hepatite A/patogenicidade , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Carga Viral , Eliminação de Partículas Virais
18.
Microbiol Spectr ; 9(1): e0070821, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378948

RESUMO

Chronic inflammation is a hallmark of human immunodeficiency virus (HIV) infection and a risk factor for the development and progression of age-related comorbidities. Although HIV-associated gut dysbiosis has been suggested to be involved in sustained chronic inflammation, there remains a limited understanding of the association between gut dysbiosis and chronic inflammation during HIV infection. Here, we investigated compositional changes in the gut microbiome and its role in chronic inflammation in patients infected with HIV. We observed that the gut microbiomes of patients with low CD4 counts had reduced alpha diversity compared to those in uninfected controls. Following CD4 recovery, alpha diversity was restored, but intergroup dissimilarity of bacterial composition remained unchanged between patients and uninfected controls. Patients with HIV had higher abundance of the classes Negativicutes, Bacilli, and Coriobacteriia, as well as depletion of the class Clostridia. These relative abundances positively correlated with inflammatory cytokines and negatively correlated with anti-inflammatory cytokines. We found that gut dysbiosis accompanying HIV infection was characterized by a depletion of obligate anaerobic Clostridia and enrichment of facultative anaerobic bacteria, reflecting increased intestinal oxygen levels and intestinal permeability. Furthermore, it is likely that HIV-associated dysbiosis shifts the immunological balance toward inflammatory Th1 responses and encourages proinflammatory cytokine production. Our results suggest that gut dysbiosis contributes to sustaining chronic inflammation in patients with HIV infection despite effective antiretroviral therapy and that correcting gut dysbiosis will be effective in improving long-term outcomes in patients. IMPORTANCE Chronic inflammation is a hallmark of HIV infection and is associated with the development and progression of age-related comorbidities. Although the gastrointestinal tract is a major site of HIV replication and CD4+ T-cell depletion, the role of HIV-associated imbalance of gut microbiome in chronic inflammation is unclear. Here, we aimed to understand the causal relationship between abnormalities in the gut microbiome and chronic inflammation in patients with HIV. Our results suggest HIV-associated gut dysbiosis presents a more aerobic environment than that of healthy individuals, despite prolonged viral suppression. This dysbiosis likely results from a sustained increase in intestinal permeability, which supports sustained bacterial translocation in HIV patients, despite effective therapy. Additionally, we observed that several bacterial taxa enriched in HIV patients were associated with increased expression of inflammatory cytokines. Collectively, these results suggest that gut dysbiosis plays an important role in chronic inflammation in HIV patients.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Microbioma Gastrointestinal , Infecções por HIV/tratamento farmacológico , Infecções por HIV/microbiologia , Adulto , Fármacos Anti-HIV/efeitos adversos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Linfócitos T CD4-Positivos/imunologia , Doença Crônica/terapia , Disbiose/etiologia , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
19.
Sci Rep ; 11(1): 13945, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230563

RESUMO

Acute gastroenteritis associated with diarrhea is considered a serious disease in Africa and South Asia. In this study, we examined the trends in the causative pathogens of diarrhea and the corresponding gut microbiota in Ghana using microbiome analysis performed on diarrheic stools via 16S rRNA sequencing. In total, 80 patients with diarrhea and 34 healthy adults as controls, from 2017 to 2018, were enrolled in the study. Among the patients with diarrhea, 39 were norovirus-positive and 18 were rotavirus-positive. The analysis of species richness (Chao1) was lower in patients with diarrhea than that in controls. Beta-diversity analysis revealed significant differences between the two groups. Several diarrhea-related pathogens (e.g., Escherichia-Shigella, Klebsiella and Campylobacter) were detected in patients with diarrhea. Furthermore, co-infection with these pathogens and enteroviruses (e.g., norovirus and rotavirus) was observed in several cases. Levels of both Erysipelotrichaceae and Staphylococcaceae family markedly differed between norovirus-positive and -negative diarrheic stools, and the 10 predicted metabolic pathways, including the carbohydrate metabolism pathway, showed significant differences between rotavirus-positive patients with diarrhea and controls. This comparative study of diarrheal pathogens in Ghana revealed specific trends in the gut microbiota signature associated with diarrhea and that pathogen-dependent dysbiosis occurred in viral gastroenteritis.


Assuntos
Disbiose/microbiologia , Disbiose/virologia , Gastroenterite/microbiologia , Gastroenterite/virologia , Microbioma Gastrointestinal , Adolescente , Adulto , Bactérias/classificação , Biodiversidade , Estudos de Casos e Controles , Criança , Pré-Escolar , Diarreia/microbiologia , Diarreia/virologia , Fezes/microbiologia , Feminino , Gana , Humanos , Masculino , Filogenia , Rotavirus/fisiologia
20.
Front Cell Infect Microbiol ; 11: 646467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084754

RESUMO

HIV-1 infected individuals under antiretroviral therapy can control viremia but often develop non-AIDS diseases such as cardiovascular and metabolic disorders. Gut microbiome dysbiosis has been indicated to be associated with progression of these diseases. Analyses of gut/fecal microbiome in individual regions are important for our understanding of pathogenesis in HIV-1 infections. However, data on gut/fecal microbiome has not yet been accumulated in West Africa. In the present study, we examined fecal microbiome compositions in HIV-1 infected adults in Ghana, where approximately two-thirds of infected adults are females. In a cross-sectional case-control study, age- and gender-matched HIV-1 infected adults (HIV+; n = 55) and seronegative controls (HIV-; n = 55) were enrolled. Alpha diversity of fecal microbiome in HIV+ was significantly reduced compared to HIV- and associated with CD4 counts. HIV+ showed reduction in varieties of bacteria including Faecalibacterium, the most abundant in seronegative controls, but enrichment of Proteobacteria. Ghanaian HIV+ exhibited enrichment of Dorea and Blautia; bacteria groups whose depletion has been reported in HIV-1 infected individuals in several other cohorts. Furthermore, HIV+ in our cohort exhibited a depletion of Prevotella, a genus whose enrichment has recently been shown in men having sex with men (MSM) regardless of HIV-1 status. The present study revealed the characteristics of dysbiotic fecal microbiome in HIV-1 infected adults in Ghana, a representative of West African populations.


Assuntos
Infecções por HIV , HIV-1 , Microbiota , Adulto , Estudos de Casos e Controles , Estudos Transversais , Disbiose , Feminino , Gana , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...