Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 113: 110911, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37805102

RESUMO

The rewiring of cellular metabolism is a defining characteristic of cancer, as tumor cells adapt to acquire essential nutrients from a nutrient-poor environment to sustain their viability and biomass. While hypoxia has been identified as a major factor depriving cancer cells of nutrients, recent studies have revealed that cancer cells distant from supporting blood vessels also face nutrient limitations. To overcome this challenge, hypoxic cancer cells, which heavily rely on glucose as an energy source, employ alternative pathways such as glycogen metabolism and reductive carboxylation of glutamine to meet their energy requirements for survival. Our preliminary studies, alongside others in the field, have shown that under glucose-deficient conditions, hypoxic cells can utilize mannose and maltose as alternative energy sources. This review aims to comprehensively examine the hypoxic cancer microenvironment, its association with drug resistance, and potential therapeutic strategies for targeting this unique niche. Furthermore, we will critically evaluate the current literature on hypoxic cancer microenvironments and explore state-of-the-art techniques used to analyze alternate carbohydrates, specifically mannose and maltose, in complex biological fluids. We will also propose the most effective analytical methods for quantifying mannose and maltose in such biological samples. By gaining a deeper understanding of the hypoxic cancer cell microenvironment and its role in drug resistance, novel therapeutic approaches can be developed to exploit this knowledge.


Assuntos
Maltose , Neoplasias , Humanos , Hipóxia Celular , Maltose/farmacologia , Maltose/uso terapêutico , Manose/farmacologia , Manose/uso terapêutico , Neoplasias/metabolismo , Hipóxia , Glucose/farmacologia , Microambiente Tumoral , Resistência a Medicamentos
2.
Asian Pac J Cancer Prev ; 23(1): 161-169, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092384

RESUMO

AIM: To investigate the potential anti-inflammatory and biochemical effects of Moringa peregrina leaf extracts on testosterone-induced benign prostatic hyperplasia (BPH) in rats. METHODS: Six groups of rats (each group included 5 rats) were included in this study. The groups included: 1) the control group, 2) the testosterone-induced BPH group, 3) with 50 mg/kg bwt (bodyweight) oil-treated BPH, 4) with 100 mg/kg bwt. oil-treated BPH, 5) with 500mg/kg bwt. ethanol treated BPH and 6) with 1,000 mg/kg bwt. aqueous treated BPH group. Biochemical markers were measured to evaluate the effect of M. peregrina leaf extracts. RESULTS: Our results showed a significant improvement in the thickness of epithelial cells of the BPH glandular tissues when treated with different M. peregrina extracts (p < 0.05). In addition, M. peregrina extracts showed anti-inflammatory, anti-proliferative and anti-angiogenesis effects on the BPH tissues by reduction of IL-6, PCNA and VEGF-A, respectively. CONCLUSION: Our preclinical study concluded that M. peregrina leaf extracts showed a significant effect on BPH by reducing inflammation, proliferation, and angiogenic processes with no signs of toxicity.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Moringa , Extratos Vegetais/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Animais , Modelos Animais de Doenças , Masculino , Folhas de Planta , Hiperplasia Prostática/induzido quimicamente , Ratos , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...