Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(8): 6348-6358, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38314696

RESUMO

The advancement in thin-film exfoliation for synthesizing oxide membranes has led to possibilities for creating artificially assembled heterostructures with structurally and chemically incompatible materials. The sacrificial layer method is a promising approach to exfoliate as-grown films from a compatible material system, allowing for their integration with dissimilar materials. Nonetheless, the conventional sacrificial layers often possess an intricate stoichiometry, thereby constraining their practicality and adaptability, particularly when considering techniques such as molecular beam epitaxy (MBE). This is where easy-to-grow binary alkaline-earth-metal oxides with a rock salt crystal structure are useful. These oxides, which include (Mg, Ca, Sr, Ba)O, can be used as a sacrificial layer covering a much broader range of lattice parameters compared to conventional sacrificial layers and are easily dissolvable in deionized water. In this study, we show the epitaxial growth of the single-crystalline perovskite SrTiO3 (STO) on sacrificial layers consisting of crystalline SrO, BaO, and Ba1-xCaxO films, employing a hybrid MBE method. Our results highlight the rapid (≤5 min) dissolution of the sacrificial layer when immersed in deionized water, facilitating the fabrication of millimeter-sized STO membranes. Using high-resolution X-ray diffraction, atomic-force microscopy, scanning transmission electron microscopy, impedance spectroscopy, and scattering-type near-field optical microscopy (SNOM), we demonstrate single-crystalline STO membranes with bulk-like intrinsic dielectric properties. The employment of alkaline earth metal oxides as sacrificial layers is likely to simplify membrane synthesis, particularly with MBE, thus expanding the research and application possibilities.

2.
Nat Commun ; 14(1): 6005, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752136

RESUMO

Rich electron-matter interactions fundamentally enable electron probe studies of materials such as scanning transmission electron microscopy (STEM). Inelastic interactions often result in structural modifications of the material, ultimately limiting the quality of electron probe measurements. However, atomistic mechanisms of inelastic-scattering-driven transformations are difficult to characterize. Here, we report direct visualization of radiolysis-driven restructuring of rutile TiO2 under electron beam irradiation. Using annular dark field imaging and electron energy-loss spectroscopy signals, STEM probes revealed the progressive filling of atomically sharp nanometer-wide cracks with striking atomic resolution detail. STEM probes of varying beam energy and precisely controlled electron dose were found to constructively restructure rutile TiO2 according to a quantified radiolytic mechanism. Based on direct experimental observation, a "two-step rolling" model of mobile octahedral building blocks enabling radiolysis-driven atomic migration is introduced. Such controlled electron beam-induced radiolytic restructuring can be used to engineer novel nanostructures atom-by-atom.

6.
Nano Lett ; 23(16): 7576-7583, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37535801

RESUMO

Using in situ atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt-Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn4 to PtSn2 phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn2 phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn4 phase. In the case of the PtSn2 to Pt2Sn3 transformation, the anisotropy in the structure of product Pt2Sn3 dictates the path of transformation. Analysis of atomic configurations at the transformation front elucidates the diffusion pathways and lattice distortions required for these phase transformations. Comparison of multiple Pt-Sn phase transformations reveals the structural parameters governing solid to solid phase transformations in this technologically interesting intermetallic system.

7.
Nat Commun ; 14(1): 4151, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438330

RESUMO

Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-x show the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices.

8.
Nat Nanotechnol ; 18(9): 1005-1011, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37217765

RESUMO

The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering.

9.
Nat Commun ; 13(1): 7774, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522321

RESUMO

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

10.
J Am Chem Soc ; 144(48): 22113-22127, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36383403

RESUMO

Accelerating catalytic chemistry and tuning surface reactions require precise control of the electron density of metal atoms. In this work, nanoclusters of platinum were supported on a graphene sheet within a catalytic condenser device that facilitated electron or hole accumulation in the platinum active sites with negative or positive applied potential, respectively. The catalytic condenser was fabricated by depositing on top of a p-type Si wafer an amorphous HfO2 dielectric (70 nm), on which was placed the active layer of 2-4 nm platinum nanoclusters on graphene. A potential of ±6 V applied to the Pt/graphene layer relative to the silicon electrode moved electrons into or out of the active sites of Pt, attaining charge densities more than 1% of an electron or hole per surface Pt atom. At a level of charge condensation of ±10% of an electron per surface atom, the binding energy of carbon monoxide to a Pt(111) surface was computed via density functional theory to change 24 kJ mol-1 (0.25 eV), which was consistent with the range of carbon monoxide binding energies determined from temperature-programmed desorption (ΔBECO of 20 ± 1 kJ mol-1 or 0.19 eV) and equilibrium surface coverage measurements (ΔBECO of 14 ± 1 kJ mol-1 or 0.14 eV). Impedance spectroscopy indicated that Pt/graphene condensers with potentials oscillating at 3000 Hz exhibited negligible loss in capacitance and charge accumulation, enabling programmable surface conditions at amplitudes and frequencies necessary to achieve catalytic resonance.

11.
ACS Appl Electron Mater ; 4(7): 3623-3631, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35937184

RESUMO

Perovskite stannate SrSnO3 (SSO) is attracting attention as ultraviolet transparent conducting oxides (UV TCOs) due to its ultrawide band gap and high conductivity. Here, we investigate in detail the thickness-dependent electrical, structural, and optical properties of sequentially strain-relaxed La-doped SrSnO3 (SLSO) epitaxial thin films. We find that the SLSO films grow as an orthorhombic Pnma phase with a - a - c + in the c + direction under the tensile strain. With the strain relaxation, as the films become thicker, vertical grain boundaries are created and the orthorhombic phase becomes reoriented to all three possible orientations. Simultaneously, the conductance starts to deviate from the linear behavior with increasing film thickness. Through the analysis of thickness fringes in optical transmittance, we found that a 120 nm thick nominally 4% La-doped SrSnO3 film has a figure of merit (φTC = 2.65 × 10-3 Ω-1) at λ = 300 nm in the deep-UV region, which is the highest value among the well-known candidates for UV TCOs reported to date.

12.
Phys Rev Lett ; 129(1): 017203, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841567

RESUMO

Injecting spin currents into antiferromagnets and realizing efficient spin-orbit-torque switching represents a challenging topic. Because of the diminishing magnetic susceptibility, current-induced antiferromagnetic dynamics remain poorly characterized, complicated by spurious effects. Here, by growing a thin film antiferromagnet, α-Fe_{2}O_{3}, along its nonbasal plane orientation, we realize a configuration where the spin-orbit torque from an injected spin current can unambiguously rotate and switch the Néel vector within the tilted easy plane, with an efficiency comparable to that of classical ferrimagnetic insulators. Our study introduces a new platform for quantitatively characterizing switching and oscillation dynamics in antiferromagnets.

13.
JACS Au ; 2(5): 1123-1133, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647588

RESUMO

Precise control of electron density at catalyst active sites enables regulation of surface chemistry for the optimal rate and selectivity to products. Here, an ultrathin catalytic film of amorphous alumina (4 nm) was integrated into a catalytic condenser device that enabled tunable electron depletion from the alumina active layer and correspondingly stronger Lewis acidity. The catalytic condenser had the following structure: amorphous alumina/graphene/HfO2 dielectric (70 nm)/p-type Si. Application of positive voltages up to +3 V between graphene and the p-type Si resulted in electrons flowing out of the alumina; positive charge accumulated in the catalyst. Temperature-programmed surface reaction of thermocatalytic isopropanol (IPA) dehydration to propene on the charged alumina surface revealed a shift in the propene formation peak temperature of up to ΔT peak∼50 °C relative to the uncharged film, consistent with a 16 kJ mol-1 (0.17 eV) reduction in the apparent activation energy. Electrical characterization of the thin amorphous alumina film by ultraviolet photoelectron spectroscopy and scanning tunneling microscopy indicates that the film is a defective semiconductor with an appreciable density of in-gap electronic states. Density functional theory calculations of IPA binding on the pentacoordinate aluminum active sites indicate significant binding energy changes (ΔBE) up to 60 kJ mol-1 (0.62 eV) for 0.125 e- depletion per active site, supporting the experimental findings. Overall, the results indicate that continuous and fast electronic control of thermocatalysis can be achieved with the catalytic condenser device.

14.
Nat Commun ; 13(1): 2972, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624122

RESUMO

The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe2) and a topological semimetal (ZrTe2). We find that one unit-cell (u.c.) thick 1T-CrTe2 grown epitaxially on ZrTe2 is a 2D ferromagnet with a clear anomalous Hall effect. In thicker samples (12 u.c. thick CrTe2), the anomalous Hall effect has characteristics that may arise from real-space Berry curvature. Finally, in ultrathin CrTe2 (3 u.c. thickness), we demonstrate current-driven magnetization switching in a full vdW topological semimetal/2D ferromagnet heterostructure device.

15.
Sci Adv ; 8(14): eabm8162, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385314

RESUMO

Zeolite nanosheets can be used for the fabrication of low-defect-density, thin, and oriented zeolite separation membranes. However, methods for manipulating their morphology are limited, hindering progress toward improved performance. We report the direct synthesis (i.e., without using exfoliation, etching, or other top-down processing) of thin, flat MFI nanosheets and demonstrate their use as high-performance membranes for xylene isomer separations. Our MFI nanosheets were synthesized using nanosheet fragments as seeds instead of the previously used MFI nanoparticles. The obtained MFI nanosheets exhibit improved thickness uniformity and are free of rotational and MEL intergrowths as shown by transmission electron microscopy (TEM) imaging. The nanosheets can form well-packed nanosheet coatings. Upon gel-free secondary growth, the obtained zeolite MFI membranes show high separation performance for xylene isomers at elevated temperature (e.g., p-xylene flux up to 1.5 × 10-3 mol m-2 s-1 and p-/o-xylene separation factor of ~600 at 250°C).

16.
Angew Chem Int Ed Engl ; 60(35): 19214-19221, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34189811

RESUMO

Synthesis of a pentasil-type zeolite with ultra-small few-unit-cell crystalline domains, which we call FDP (few-unit-cell crystalline domain pentasil), is reported. FDP is made using bis-1,5(tributyl ammonium) pentamethylene cations as structure directing agent (SDA). This di-quaternary ammonium SDA combines butyl ammonium, in place of the one commonly used for MFI synthesis, propyl ammonium, and a five-carbon nitrogen-connecting chain, in place of the six-carbon connecting chain SDAs that are known to fit well within the MFI pores. X-ray diffraction analysis and electron microscopy imaging of FDP indicate ca. 10 nm crystalline domains organized in hierarchical micro-/meso-porous aggregates exhibiting mesoscopic order with an aggregate particle size up to ca. 5 µm. Al and Sn can be incorporated into the FDP zeolite framework to produce active and selective methanol-to-hydrocarbon and glucose isomerization catalysts, respectively.

17.
Nano Lett ; 21(10): 4357-4364, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33973791

RESUMO

Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO3 with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba vacancies adjacent to the core atomic sites resulting in reconstruction of the core. Notwithstanding the presence of extremely large tensile strain fields, when La atoms segregate inside the dislocation core, they become B-site dopants, replacing Sn atoms and compensating the positive charge of the core oxygen vacancies. Electron energy-loss spectroscopy shows that the local electronic structure of these dislocations changes dramatically due to segregation of the dopants inside and around the core ranging from formation of strong La-O hybridized electronic states near the conduction band minimum to insulator-to-metal transition.

18.
Sci Adv ; 7(3)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523903

RESUMO

A line defect with metallic characteristics has been found in optically transparent BaSnO3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level-crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO3 films.

19.
Nano Lett ; 21(3): 1246-1252, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33263403

RESUMO

We describe a novel approach for the rational design and synthesis of self-assembled periodic nanostructures using martensitic phase transformations. We demonstrate this approach in a thin film of perovskite SrSnO3 with reconfigurable periodic nanostructures consisting of regularly spaced regions of sharply contrasted dielectric properties. The films can be designed to have different periodicities and relative phase fractions via chemical doping or strain engineering. The dielectric contrast within a single film can be tuned using temperature and laser wavelength, effectively creating a variable photonic crystal. Our results show the realistic possibility of designing large-area self-assembled periodic structures using martensitic phase transformations with the potential of implementing "built-to-order" nanostructures for tailored optoelectronic functionalities.

20.
ACS Omega ; 5(34): 21853-21861, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905341

RESUMO

Molybdenum disulfide (MoS2) is being studied for a wide range of applications including lithium-ion batteries and hydrogen evolution reaction catalysts. In this paper, we present a single-step nonthermal plasma-enhanced chemical vapor deposition (PECVD) process for the production of two-dimensional MoS2. This method provides an alternative route to established CVD and plasma synthesis routes. The approach presented here synthesizes films in only a few minutes using elemental sulfur (S8) and molybdenum pentachloride (MoCl5) as precursors. Deposition utilizes a nonthermal inductively coupled plasma reactor and temperatures around 500 °C. Film growth characteristics and nucleation are studied as a function of precursor concentrations, argon flow rate, plasma power, and deposition time. Few-layer two-dimensional (MoS2) films were formed at low precursor concentrations. Films with nanoparticle-like features were formed when the precursor concentration was high. Noncontinuous nonstoichiometric films were found at low plasma power, while high plasma power led to continuous films with good stoichiometry. The vacancies and defects in these films may provide active sites for hydrogen evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...