Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 22(4): e8719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650612

RESUMO

Surveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. Anisakis pegreffii, A. simplex (s. s.) and Cryptocotyle lingua were found in European seabass, Atlantic bluefin tuna and/or cod, and Pseudamphistomum truncatum and Paracoenogonimus ovatus in tench, produced in open offshore cages or flow-through ponds or tanks. It is almost certain that fish produced in closed recirculating aquaculture systems (RAS) or flow-through facilities with filtered water intake and exclusively fed heat-treated feed are free of zoonotic parasites. Since the last EFSA opinion, the UV-press and artificial digestion methods have been developed into ISO standards to detect parasites in fish, while new UV-scanning, optical, molecular and OMICs technologies and methodologies have been developed for the detection, visualisation, isolation and/or identification of zoonotic parasites in fish. Freezing and heating continue to be the most efficient methods to kill parasites in fishery products. High-pressure processing may be suitable for some specific products. Pulsed electric field is a promising technology although further development is needed. Ultrasound treatments were not effective. Traditional dry salting of anchovies successfully inactivated Anisakis. Studies on other traditional processes - air-drying and double salting (brine salting plus dry salting) - suggest that anisakids are successfully inactivated, but more data covering these and other parasites in more fish species and products is required to determine if these processes are always effective. Marinade combinations with anchovies have not effectively inactivated anisakids. Natural products, essential oils and plant extracts, may kill parasites but safety and organoleptic data are lacking. Advanced processing techniques for intelligent gutting and trimming are being developed to remove parasites from fish.

2.
Parasit Vectors ; 17(1): 175, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570784

RESUMO

BACKGROUND: Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS: To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS: Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS: We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.


Assuntos
Vesículas Extracelulares , Platelmintos , Dourada , Trematódeos , Animais , Proteômica , Dourada/parasitologia
3.
EFSA J ; 21(Suppl 1): e211004, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38047133

RESUMO

Anisakiosis is a significant zoonotic disease caused by parasitic nematodes of the Anisakis genus. It can be contracted by humans through the consumption of raw or undercooked fish contaminated with the parasite, leading to gastrointestinal and allergic symptoms. While anisakiosis is not frequently documented in Portugal, the presence of allergic reactions to Anisakis in Spain suggests ongoing exposure in the Iberian Peninsula. To address this concern, the Interdisciplinary Centre of Marine and Environmental Research in Porto, Portugal, in collaboration with the Biology Centre of Czech Academy of Sciences in Ceske Budejovice, Czech Republic, has proposed a project entitled 'Assessing Portuguese Health Risks: Anisakis Parasite in Atlantic Chub Mackerel (Scomber colias) Sold in Portuguese Markets' under the European Food Risk Assessment Fellowship Programme. The primary objective of the project is to gather valuable epidemiological data on the host, Atlantic chub mackerel (S. colias) and the parasitic nematode (Anisakis spp.) with the focus on assessing contamination levels and evaluating potential health risks associated with anisakiosis in the Portuguese population. By conducting this research, the project aims to contribute to the understanding of anisakiosis and its impact on public health in Portugal. Investigation of the presence of the Anisakis parasite in Atlantic chub mackerel sold in Portuguese markets will provide crucial insights into the risks associated with consuming raw or undercooked fish. Ultimately, our findings will aid in the development of preventive measures and guidelines to ensure the well-being of the Portuguese population.

4.
Vet Parasitol ; 323: 110050, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837730

RESUMO

The in vitro life cycle of zoonotic helminths is an essential tool for -omic translational studies focused on disease control and treatment. Anisakiosis is an emerging zoonosis contracted by the ingestion of raw or undercooked fish infected with the third stage larvae (L3) of two sibling species Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii, the latter being the predominant species in the Mediterranean basin. Recently, in vitro culture of A. pegreffii has been developed to enable fast and large-scale production of fertile adults. However, the conditions for larval development from hatching to infective L3 were not fulfilled to complete the cycle. Herein, we used a Drosophila medium supplemented with chicken serum and adjusted different osmolarities to maintain the culture of L3 hatched from eggs for up to 17 weeks. The highest survival rate was observed in the medium with the highest osmolarities, which also allowed the highest larval exsheathment rate. Key morphological features of embryogenesis and postembryogenesis studied by transmission electron microscopy revealed that the excretory gland cell is differentiated already up to 48 h post-hatching. Extracellular vesicles and cell-free mitochondria are discharged between the two cuticle sheets of the second stage larvae (L2). Contemporarly cultivated, two populations of adult A. simplex s.s. and A. pegreffii reached an average production of 29,914.05 (± 27,629.36) and 24,370.96 (± 12,564.86) eggs/day/female, respectively. The chromosome spreads of A. pegreffii obtained from mature gonads suggests a diploid karyotype formula of 2n = 18. The development of a reliable protocol for the in vitro culture of a polyxenous nematode such as Anisakis spp. will serve to screen for much needed novel drug targets, but also to study the intricated and unknown ecological and physiological traits of these trophically transmitted marine nematodes.

5.
Trends Parasitol ; 39(5): 345-357, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890022

RESUMO

Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.


Assuntos
Helmintos , Parasitos , Animais , Peptídeos Catiônicos Antimicrobianos , Bactérias
6.
Parasit Vectors ; 16(1): 51, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732837

RESUMO

BACKGROUND: Anisakiasis is a foodborne disease caused by the third-stage larvae (L3) of two species belonging to the genus Anisakis: Anisakis pegreffii and Anisakis simplex sensu stricto. Both species have been the subject of different -omics studies undertaken in the past decade, but a reliable in vitro culture protocol that would enable a more versatile approach to functional studies has never been devised. In nature, A. pegreffii shows a polyxenous life-cycle. It reproduces in toothed whales (final host) and disseminates embryonated eggs via cetacean faeces in the water column. In the environment, a first- (L1) and second-stage larva (L2) develops inside the egg, and subsequently hatched L2 is ingested by a planktonic crustacean or small fish (intermediate host). In the crustacean pseudocoelom, the larva moults to the third stage (L3) and grows until the host is eaten by a fish or cephalopod (paratenic host). Infective L3 migrates into the visceral cavity of its paratenic host and remains in the state of paratenesis until a final host preys on the former. Once in the final host's gastric chambers, L3 attaches to mucosa, moults in the fourth stage (L4) and closes its life-cycle by becoming reproductively mature. METHODS: Testing two commercially available media (RPMI 1640, Schneider's Drosophila) in combination with each of the six different heat-inactivated sera, namely foetal bovine, rabbit, chicken, donkey, porcine and human serum, we have obtained the first reliable, fast and simple in vitro cultivation protocol for A. pegreffii. RESULTS: Schneider's Drosophila insect media supplemented with 10% chicken serum allowed high reproducibility and survival of adult A. pegreffii. The maturity was reached already at the beginning of the third week in culture. From collected eggs, hatched L2 were maintained in culture for 2 weeks. The protocol also enabled the description of undocumented morphological and ultrastructural features of the parasite developmental stages. CONCLUSIONS: Closing of the A. pegreffii life-cycle from L3 to reproducing adults is an important step from many research perspectives (e.g., vaccine and drug-target research, transgenesis, pathogenesis), but further effort is necessary to optimise the efficient moulting of L2 to infective L3.


Assuntos
Anisaquíase , Anisakis , Ascaridoidea , Doenças dos Peixes , Humanos , Animais , Bovinos , Coelhos , Suínos , Reprodutibilidade dos Testes , Anisaquíase/veterinária , Anisaquíase/parasitologia , Peixes , Larva , Cetáceos , Doenças dos Peixes/parasitologia
7.
Cells ; 11(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010603

RESUMO

In nematodes that invade the gastro-intestinal tract of the ruminant, the process of larval exsheathment marks the transition from the free-living to the parasitic stages of these parasites. To investigate the secretome associated with larval exsheathment, a closed in vitro system that effectively reproduces the two basic components of an anaerobic rumen environment (CO2 and 39 °C) was developed to trigger exsheathment in one of the most pathogenic and model gastrointestinal parasitic nematodes, Haemonchus contortus (barber's pole worm). This study reports the use of multimodal untargeted metabolomics and lipidomics methodologies to identify the metabolic signatures and compounds secreted during in vitro larval exsheathment in the H. contortus infective third-stage larva (iL3). A combination of statistical and chemoinformatic analyses using three analytical platforms revealed a panel of metabolites detected post exsheathment and associated with amino acids, purines, as well as select organic compounds. The major lipid classes identified by the non-targeted lipidomics method applied were lysophosphatidylglycerols, diglycerides, fatty acyls, glycerophospholipids, and a triglyceride. The identified metabolites may serve as metabolic signatures to improve tractability of parasitic nematodes for characterizing small molecule host-parasite interactions related to pathogenesis, vaccine and drug design, as well as the discovery of metabolic biomarkers.


Assuntos
Haemonchus , Nematoides , Animais , Larva , Ruminantes , Secretoma
8.
Acta Biomater ; 146: 131-144, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35470073

RESUMO

An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.


Assuntos
Parasitos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Bactérias , Humanos , Leucócitos Mononucleares , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana
9.
Front Cell Infect Microbiol ; 12: 1042679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590595

RESUMO

Infective third-stage larvae (L3) of the marine nematode Anisakis pegreffii cause inflammation and clinical symptoms in humans, their accidental host, that subside and self-resolve in a couple of weeks after L3 die. To characterise the differences in an early immune response of a marine vs. terrestrial host, we stimulated peripheral blood leukocytes (PBLs) of fish (paratenic host) and rat (accidental, human-model host) with A. pegreffii crude extract and analysed PBL transcriptomes 1 and 12 h post-stimulation. Fish and rat PBLs differentially expressed 712 and 493 transcripts, respectively, between 1 and 12 h post-stimulation (false discovery rate, FDR <0.001, logFC >2). While there was a difference in the highest upregulated transcripts between two time-points, the same Gene Ontologies, biological processes (intracellular signal transduction, DNA-dependent transcription, and DNA-regulated regulation of transcription), and molecular functions (ATP and metal ion binding) were enriched in the two hosts, showing an incrementing dynamic between 1 and 12 h. This suggests that the two distinct hosts employ qualitatively different transcript cascades only to achieve the same effect, at least during an early innate immunity response. Activation of later immunity elements and/or a combination of other host's intrinsic conditions may contribute to the death of L3 in the terrestrial host.


Assuntos
Anisaquíase , Anisakis , Doenças dos Peixes , Animais , Humanos , Ratos , Anisakis/genética , Anisaquíase/veterinária , Peixes , Larva , Misturas Complexas
10.
Pathogens ; 10(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578236

RESUMO

Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.

11.
Pathogens ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451443

RESUMO

Gill monogenean Sparicotyle chrysophrii is considered the most detrimental fish parasite to the Mediterranean aquaculture. Treatment of sparicotylosis relies on frequent gill inspections correlated with the seasonal increase in seawater temperature, application of functional feeds, and treatments with formalin baths where permitted. While the latter is bound to be banned in Europe, other synthetic anthelminthics, such as praziquantel and ivermectin, are prone to induce resistance in the parasites. Therefore, we investigated, in vitro, 14 synthetic and natural compounds against adult S. chrysophrii, developing dose-response modelsm and estimated toxicity levels at 20%, 50%, and 80% parasite mortality. Bactericidal activity of target compounds was also tested in two important aquaculture bacteria; Vibrio harveyi and V. anguillarum, while their potential host toxicity was evaluated in gilthead seabream SAF-1 cell line. Synthetic compound bithionate sodium exerted the most potent toxicity against the monogenean, no host cytotoxicity, and a medium and high potency against two bacterial pathogens. In comparison, target natural compounds were approximately 20 (cedrol) or up to 154 times (camphor) less toxic for the monogenean. Rather than completely dismissing natural compounds, we suggest that their application in combination with synthetic drugs, especially if administered in the feed, might be useful in sparicotylosis treatment.

12.
Genomics ; 113(5): 2891-2905, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186188

RESUMO

Parasitism is a highly successful life strategy and a driving force in genetic diversity that has evolved many times over. Accidental infections of non-targeted hosts represent an opportunity for lateral host switches and parasite niche expansion. However, if directed toward organisms that are phylogenetically distant from parasite's natural host, such as humans, it may present a dead-end environment where the parasite fails to mature or is even killed by host immunity. One example are nematodes of Anisakidae family, genus Anisakis, that through evolution have lost the ability to propagate in terrestrial hosts, but can survive for a limited time in humans causing anisakiasis. To scrutinize versatility of Anisakis to infect an evolutionary-distant host, we performed transcriptomic profiling of larvae successfully migrating through the rat, a representative model of accidental human infection and compared it to that of larvae infecting an evolutionary-familiar, paratenic host (fish). In a homeothermic accidental host Anisakis upregulated ribosome-related genes, cell division, cuticle constituents, oxidative phosphorylation, in an unsuccessful attempt to molt to the next stage. In contrast, in the paratenic poikilothermic host where metabolic pathways were moderately upregulated or silenced, larvae prepared for dormancy by triggering autophagy and longevity pathways. Identified differences and the modelling of handful of shared transcripts, provide the first insights into evolution of larval nematode virulence, warranting their further investigation as potential drug therapy targets.


Assuntos
Anisaquíase , Anisakis , Animais , Anisaquíase/genética , Anisaquíase/parasitologia , Anisakis/genética , Peixes , Larva/genética , Ratos , Fatores de Virulência/genética
13.
Front Immunol ; 12: 645607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777043

RESUMO

Ceratothoa oestroides (Cymothoidea, Isopoda) is a generalist crustacean parasite that negatively affects the economic sustainability of European sea bass (Dicentrarchus labrax) aquaculture in the North-East Mediterranean. While mortalities are observed in fry and fingerlings, infection in juvenile and adult fish result in approximately 20% growth delay. A transcriptomic analysis (PCR array, RNA-Seq) was performed on organs (tongue, spleen, head kidney, and liver) from infected vs. Ceratothoa-free sea bass fingerlings. Activation of local and systemic immune responses was detected, particularly in the spleen, characterized by the upregulation of cytokines (also in the tongue), a general reshaping of the immunoglobulin (Ig) response and suppression of T-cell mediated responses. Interestingly, starvation and iron transport and metabolism genes were strongly downregulated, suggesting that the parasite feeding strategy is not likely hematophagous. The regulation of genes related to growth impairment and starvation supported the growth delay observed in infected animals. Most differentially expressed (DE) transcripts were exclusive of a specific organ; however, only in the tongue, the difference between infected and uninfected fish was significant. At the attachment/feeding site, the pathways involved in muscle contraction and intercellular junction were the most upregulated, whereas the pathways involved in fibrosis (extracellular matrix organization, collagen formation, and biosynthesis) were downregulated. These results suggest that parasite-inflicted damage is successfully mitigated by the host and characterized by regenerative processes that prevail over the reparative ones.


Assuntos
Bass , Doenças dos Peixes , Rim Cefálico , Isópodes/imunologia , Fígado , Doenças Parasitárias em Animais , Animais , Bass/imunologia , Bass/parasitologia , Citocinas/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica , Rim Cefálico/imunologia , Rim Cefálico/parasitologia , Fígado/imunologia , Fígado/parasitologia , Mar Mediterrâneo , Doenças Parasitárias em Animais/imunologia , Doenças Parasitárias em Animais/parasitologia
14.
Pathogens ; 10(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494355

RESUMO

Wild fish assemblages that aggregate within commercial marine aquaculture sites for feeding and shelter have been considered as a primary source of pathogenic parasites vectored to farmed fish maintained in net pens at an elevated density. In order to evaluate whether Ceratothoa oestroides (Isopoda, Cymothoidae), a generalist and pestilent isopod that is frequently found in Adriatic and Greek stocks of farmed European sea bass (Dicentrarchus labrax), transfers between wild and farmed fish, a RAD-Seq (restriction-site-associated DNA sequencing)-mediated genetic screening approach was employed. The double-digest RAD-Seq of 310 C. oestroides specimens collected from farmed European sea bass (138) and different wild farm-aggregating fish (172) identified 313 robust SNPs that evidenced a close genetic relatedness between the "wild" and "farmed" genotypes. ddRAD-Seq proved to be an effective method for detecting the discrete genetic structuring of C. oestroides and genotype intermixing between two populations. The parasite prevalence in the farmed sea bass was 1.02%, with a mean intensity of 2.0 and mean abundance of 0.02, while in the wild fish, the prevalence was 8.1%; the mean intensity, 1.81; and the mean abundance, 0.15. Such differences are likely a consequence of human interventions during the farmed fish's rearing cycle that, nevertheless, did not affect the transfer of C. oestroides.

15.
Fish Shellfish Immunol ; 106: 814-822, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32846241

RESUMO

The Atlantic bluefin tuna (ABFT; Thunnus thynnus) today represents one of the economically most important species for Croatian fisheries industry. Although the most diverse and abundant parasitofauna is usually found in the largest specimens of wild ABFT, the opposite was observed in captivity where parasite populations significantly decline by the end of the farming cycle. Copepod Brachiella thynni, is a skin parasite frequently parasitizing tuna, whose population also decreases in number throughout the rearing process. In order to better understand the immunity mechanisms underlying ABFT reaction to B. thynni infection, we studied expression profiles of immunity related genes; interleukin 1ß (il1ß), tumour necrosis factors (tnfα1, tnfα2), complement component 4 (c4) and caspase 3 (casp3), in peripheral blood leukocytes (PBLs) during in vitro stimulation by B. thynni protein extracts (i.e. antigens) and in infected tissues at B. thynni parasitation site. Finally, a histopathological analysis of semi-thin and ultra-thin sections of tissues surrounding B. thynii attachment site was performed to evaluate the severity of parasite-induced lesions and identify involved cell lineages. In vitro stimulation of ABFT PBLs with B. thynii antigens caused a dose-depended upregulation of selected genes, among which tnfα1 showed the highest induction by both concentrations of B. thynni protein extract. However, targeted genes were not significantly upregulated in the infected tissue. Also, no significant alterations in ultrastructure of epithelial layers surrounding B. thynii attachment site were noticed, except local tissue erosion, necrosis of squamous epithelium and proliferation of rodlet and goblet cells. Our results suggest that B. thynii has evolved strategies to successfully bypass both innate immune response and the connective-tissue proliferation processes. Therefore, the observed disappearance of this copepod by the end of the rearing process is more likely related to its limited lifespan on the host and its inability to complete the life cycle in the rearing cages, rather than host's reaction.


Assuntos
Copépodes/fisiologia , Interações Hospedeiro-Parasita/imunologia , Atum/imunologia , Atum/parasitologia , Animais , Aquicultura , Caspase 3/genética , Complemento C3/genética , Complemento C4/genética , Feminino , Interações Hospedeiro-Parasita/genética , Interleucina-1beta/genética , Leucócitos/imunologia , Fatores de Necrose Tumoral/genética , Atum/genética
17.
Genes (Basel) ; 11(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585969

RESUMO

The view of the nucleolus as a mere ribosomal factory has been recently expanded, highlighting its essential role in immune and stress-related signalling and orchestrating. It has been shown that the nucleolus structure, formed around nucleolus organiser regions (NORs) and attributed Cajal bodies, is prone to disassembly and reassembly correlated to various physiological and pathological stimuli. To evaluate the effect of parasite stimulus on the structure of the leukocyte nucleolus, we exposed rat peripheral blood mononuclear cells (PBMC) to the crude extract of the nematode A. pegreffii (Anisakidae), and compared the observed changes to the effect of control (RPMI-1640 media), immunosuppressive (MPA) and immunostimulant treatment (bacterial lipopolysaccharide (LPS) and viral analogue polyinosinic:polycytidylic acid (poly I:C)) by confocal microscopy. Poly I:C triggered the most accentuated changes such as nucleolar fragmentation and structural unravelling, LPS induced nucleolus thickening reminiscent of cell activation, while MPA induced disassembly of dense fibrillar and granular components. A. pegreffii crude extract triggered nucleolar segregation, expectedly more enhanced in treatment with a higher dose. This is the first evidence that leukocyte nucleoli already undergo structural changes 12 h post-parasitic stimuli, although these are likely to subside after successful cell activation.


Assuntos
Anisaquíase/imunologia , Anisakis/imunologia , Nucléolo Celular/imunologia , Região Organizadora do Nucléolo/imunologia , Animais , Anisaquíase/genética , Anisaquíase/patologia , Anisakis/patogenicidade , Nucléolo Celular/efeitos dos fármacos , Humanos , Imunossupressores/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Células Intersticiais de Cajal/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/farmacologia , Região Organizadora do Nucléolo/efeitos dos fármacos , Região Organizadora do Nucléolo/genética , Poli I-C/farmacologia
18.
Pathogens ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244948

RESUMO

Parasitic isopod Ceratothoa oestroides (Cymothoidea, Isopoda) is a common and generalist buccal cavity-dweller in marine fish, recognised for its detrimental effect in fingerling and juvenile farmed European sea bass (Dicentrarchus labrax). Although distributed throughout the Mediterranean, the isopod provokes acute outbreaks mainly limited to particular endemic areas in Croatia (Adriatic Sea) and Greece (Aegean Sea). While numerous studies have previously evidenced its gross effect on farmed fish (i.e. decreased condition index, slower growth rate, lethargy and mortality), details on the host-parasite interaction are still lacking. Therefore, using a multimethodological approach, we closely examined the structure and appearance of isopod body parts acting in the attachment and feeding (stereomicroscopy, scanning and transmission electron microscopy), and the extent of host tissues damage (histology, immunohistochemistry, micro-computational tomography) induced by parasitation. Interestingly, while hematophagous nature of the parasite has been previously postulated we found no unambiguous data to support this; we observed host tissues fragmentation and extensive hyperplasia at the parasitation site, and no structures indicative of heme detoxifying mechanisms in the parasite gut, or other traces of a blood meal. The bacterial biofilm covering C. oestroides mouthparts and pereopods suggests that the isopod may play a role in conveying secondary pathogens to the infected host, or alternatively, it serves the parasite in normal interaction with its environment.

19.
PLoS Negl Trop Dis ; 14(1): e0008038, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986138

RESUMO

We undertook the first study systematically evaluating the risk of Anisakis-sensitization in Croatian fish-processing workers and potential genetic susceptibility to anisakiasis. Anti-Anisakis IgE seroprevalence and risk factors for 600 employees of Croatian fish processing facilities and 466 blood donor controls, were assessed by indirect ELISA targeted with: recombinant Ani s 1 and Ani s 7 allergens, an Anisakis crude extract, the commercial ImmunoCAP kit, and questionnaires. Genetic susceptibility to anisakiasis was evaluated by genotypisation of human leukocytes alleles (HLA). Anti-Anisakis seropositive and a fraction of negative subjects were also assessed by ELISA and Western Blot (WB) for IgG seroprevalence to Trichinella spp. Overall, the observed anti-Anisakis seroprevalence inferred by indirect ELISA was significantly higher in fish processing workers (1.8%, 95% CI 0.9-3.3%) compared to the controls (0%, 0-0.8%). Seven out of 11 Ani s 1 and Ani s 7-positives and none of selected 65 negative sera, tested positive on whole-Anisakis extract (ImmunoCAP), whereas Anisakis crude extract ELISA detected 3.9% (2.4-6.0%) seropositives in fish processing workers, three (14%) of which showed IgE reactivity to milk proteins. The highest risk associated with Anisakis-sensitization among workers was fishing in the free time, rather than any of attributes related to the occupational exposure. Although no association was observed between anti-Anisakis seropositivity and wearing gloves or protective goggles, the majority of workers (92%) wore protective gloves, minimizing the risk for Anisakis sensitization via skin contact. Six HLA alleles within DRB1 gene were significantly associated with seropositivity under dominant, allelic or recessive models. All sera confirmed negative for anti-Trichinella spp. IgG. The study exhaustively covered almost all marine fish processing workers in Croatia, reflecting real-time Anisakis sensitization status within the industry, already under the influence of wide array of allergens.


Assuntos
Anisakis/imunologia , Peixes/parasitologia , Manipulação de Alimentos , Hipersensibilidade , Exposição Ocupacional , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos , Croácia , Dispositivos de Proteção dos Olhos , Luvas Protetoras , Proteínas de Helminto , Humanos , Fatores de Risco , Trichinella/imunologia
20.
Cells ; 8(11)2019 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744245

RESUMO

Excretory and secretory products are crucial for parasite infectivity and host immunomodulation, but the functioning and ultrastructure of the excretory gland cell (EC) that produces these products are still scarcely understood and described. In light of growing reports on anisakiasis cases in Europe, we aimed to characterise the EC of larval Anisakispegreffii and adult Pseudoterranovaazarasi. In the latter, EC starts 0.85 mm from the head tip, measuring 1.936 × 0.564 mm. Larval EC shows a long nucleus with thorn-like extravaginations toward the cytoplasm, numerous electron-dense and -lucent secretory granules spanning from the perinuclear to subplasmalemmal space, an elevated number of free ribosomes, small, spherical mitochondria with few cristae and a laminated matrix, small and few Golgi apparatuses, and few endoplasmic reticula, with wide cisternae complexes. Ultrastructure suggests that anaerobic glycolysis is the main metabolic pathway, obtained through nutrient endocytosis across the pseudocoelomic surface of the EC plasmalemma and its endocytic canaliculi. Thorn-like extravaginations of EC karyotheca likely mediate specific processes (Ca2+ signaling, gene expression, transport, nuclear lipid metabolism) into the extremely wide EC cytosol, enabling focal delivery of a signal to specific sites in a short time. These functional annotations of parasitic EC should help to clarify anisakiasis pathogenesis.


Assuntos
Ascaridoidea/ultraestrutura , Glândulas Exócrinas/citologia , Anaerobiose , Animais , Ascaridoidea/citologia , Ascaridoidea/metabolismo , Ascaridoidea/patogenicidade , Glândulas Exócrinas/ultraestrutura , Glicólise , Larva/metabolismo , Larva/ultraestrutura , Microscopia Confocal , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...