Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(4-1): 043303, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347468

RESUMO

We have derived a hypernetted-chain-like (HNC-like) approximate closure of the Ornstein-Zernike equation for multibody dissipative particle dynamics (MDPD) system in which the classic closures are not directly practicable. We first point out that the Percus's method is applicable to MDPD system in which particles interact with a density-dependent potential. And then an HNC-like closure is derived using Percus's idea and the saddle-point approximation of particle free energy. This HNC-like closure is compared with results of previous researchers, and in many cases, it demonstrates better agreement with computer simulation results. The HNC-like closure is used to predict the cluster crystallization in MDPD. We determine whether the cluster crystallization will happen in a system utilizing the widely applicable Hansen-Verlet freezing criterion and by observing the radial distribution function. The conclusions drawn from the results of the HNC-like closure are in agreement with computer simulation results. We evaluate different weight functions to determine whether they are prone to cluster crystallization. A new effective density-dependent pairwise potential is also proposed to help to explain the tendency to cluster crystallization of MDPD systems.

2.
Phys Rev E ; 94(6-1): 063113, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085475

RESUMO

We investigate the application of the dissipative particle dynamics method to the instability problem of a long liquid thread surrounded by another fluid. The dispersion curves obtained from simulations are compared with classic theoretical predictions. The results from standard dissipative particle dynamics (DPD) simulations at first have a tendency of gradually approaching to Tomotika's Stokes flow prediction when the Reynolds number is decreased. But they then abnormally deviate again when the viscosity is very large. The same phenomenon is also confirmed in droplet retraction simulations when also compared with theoretical Stokes flow results. On the other hand, when a hard-core DPD model is used, with the decrease of the Reynolds number the simulation results did finally approach Tomotika's predictions when Re≈0.1. A combined presentation of the hard-core DPD results and the standard DPD results, excluding the abnormal ones, demonstrates that they are approximately on a continuum when labeled with Reynolds number. These results suggest that the standard DPD method is a suitable method for investigation of the instability problem of immersed liquid thread in the inertioviscous regime (0.1

3.
Artigo em Inglês | MEDLINE | ID: mdl-26382504

RESUMO

In this research, the dissipative particle dynamics method was used to investigate the problem of thinning and breakup in a liquid bridge. It was found that both the inertial-force-dominated thinning process and the thermal-fluctuation-dominated thinning process can be reproduced with the dissipative particle dynamics (DPD) method by varying the simulation parameters. A highly suspect viscous thinning regime was also found, but the conclusion is not irrefutable because of the complication of the shear viscosity of DPD fluid. We show in this article that the DPD method can serve as a good candidate to elucidate crossover problem in liquid bridge thinning from being hydrodynamics dominated to being thermal fluctuation dominated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...