Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250680

RESUMO

Parallel single-cell multimodal sequencing is the most intuitive and precise tool for cellular status research. In this study, we propose AMAR-seq to automate methylation, chromatin accessibility, and RNA expression coanalysis with single-cell precision. We validated the accuracy and robustness of AMAR-seq in comparison with standard single-omics methods. The high gene detection rate and genome coverage of AMAR-seq enabled us to establish a genome-wide gene expression regulatory atlas and triple-omics landscape with single base resolution and implement single-cell copy number variation analysis. Applying AMAR-seq to investigate the process of mouse embryonic stem cell differentiation, we revealed the dynamic coupling of the epigenome and transcriptome, which may contribute to unraveling the molecular mechanisms of early embryonic development. Collectively, we propose AMAR-seq for the in-depth and accurate establishment of single-cell multiomics regulatory patterns in a cost-effective, efficient, and automated manner, paving the way for insightful dissection of complex life processes.

2.
Small ; : e2402177, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077951

RESUMO

Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.

4.
Chem Res Toxicol ; 33(9): 2276-2285, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32812424

RESUMO

DNA damage can occur naturally or through environmental factors, leading to mutations in DNA replication and genomic instability in cells. Normally, natural d-nucleotides were selected by DNA polymerases. The template l-thymidine (l-T) has been shown to be bypassed by several types of DNA polymerases. However, DNA replication fidelity of nucleotide incorporation opposite l-thymidine in vivo remains unknown. Here, we constructed plasmids containing a restriction enzyme (PstI) recognition site in which the l-T lesion was site-specifically located within the PstI recognition sequence (CTGCAG). Further, we assessed the efficiencies of nucleotide incorporation opposite the l-T site and l-T lesion bypass replication in vitro and in vivo. We found that recombinants containing the l-T lesion site inhibited DNA replication. In addition, A was incorporated opposite the l-T lesion by routine PCR assay, whereas preference for nucleotide incorporation opposite the l-T site was A (13%), T (22%), C (46%), and G (19%), and no nucleotide insertion and deletions were detected in E. coli cells. In particular, a novel restriction enzyme-mediated method for detection of the mutagenic properties of DNA lesion was established, which allows us to readily detect restriction-digestion of the l-T-bearing plasmids. The study provided significant insight into how mirror-image nucleosides perturb the fidelity of DNA replication in vivo and whether they elicit mutagenic effects, which may help to understand both how DNA damage interferes with the flow of genetic information during DNA replication and development of diseases caused by gene mutation.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Timidina/farmacologia , Dano ao DNA , Replicação do DNA/genética , DNA Bacteriano/genética , Escherichia coli/citologia
5.
Bioorg Chem ; 91: 103106, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31344515

RESUMO

Application of stimuli-responsive bioactive molecules is an attractive strategy due to use for target special tissues and cells. Here, we reported synthesis of an azo-linker, 2,2'-dimethoxyl-4,4'-dihydroxymethylazobenzene (mAzo), which was more effectively recognized and cleaved by reducing glutathione (GSH) via comparing with 4,4'-dihydroxymethylazobenzene (Azo). In addition, mAzo is further exploited to engineer dumbbell asODNs, which could result in the release of asODNs and thus modulate their hybridization to target nucleic acids. The present study is the first example to disclose efficient reductive cleavage of azobenzene by GSH to generate aromatic amine. This would provide a valuable strategy for tunable cell-specific release of ODNs and modulation of known disease-causing gene expression in cancer cells.


Assuntos
Compostos Azo/farmacologia , Oligodesoxirribonucleotídeos/antagonistas & inibidores , Compostos Azo/síntese química , Compostos Azo/química , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Oligodesoxirribonucleotídeos/metabolismo , Relação Estrutura-Atividade
6.
Bioconjug Chem ; 30(1): 231-241, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30582682

RESUMO

The photoisomerization of azobenzenes provides a general means for the photocontrol of many important biomolecular structures and organismal functions. For temporal and spatial control activity of thrombin binding aptamer (TBA) by light, azobenzene derivatives were carefully selected as light-triggered molecular switches to replace TT loops and the TGT loop of TBA to reversibly control enzyme activity. These molecules interconverted between the trans and cis states under alternate UV and visible light irradiation, which consequently triggered reversible formation of G-quadruplex morphology. In addition, we investigated the impact of three azobenzene derivatives on stability, thrombin binding ability, and anticoagulant properties. The result showed that 4,4'-bis(hydroxymethyl)azobenzene at the TGT loop position significantly photoregulated affinity to thrombin and blood clotting in human plasma, which provided a successful strategy to control blood clotting in human plasma and a further evidence for design of TBA analogues with pivotal positions of modifications.


Assuntos
Aptâmeros de Nucleotídeos/química , Compostos Azo/química , Trombina/química , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA