Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28458955

RESUMO

Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 µW per mm2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.

2.
Sci Transl Med ; 8(365): 365ra157, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27856796

RESUMO

Efforts at elimination of scourges, such as malaria, are limited by the logistic challenges of reaching large rural populations and ensuring patient adherence to adequate pharmacologic treatment. We have developed an oral, ultra-long-acting capsule that dissolves in the stomach and deploys a star-shaped dosage form that releases drug while assuming a geometry that prevents passage through the pylorus yet allows passage of food, enabling prolonged gastric residence. This gastric-resident, drug delivery dosage form releases small-molecule drugs for days to weeks and potentially longer. Upon dissolution of the macrostructure, the components can safely pass through the gastrointestinal tract. Clinical, radiographic, and endoscopic evaluation of a swine large-animal model that received these dosage forms showed no evidence of gastrointestinal obstruction or mucosal injury. We generated long-acting formulations for controlled release of ivermectin, a drug that targets malaria-transmitting mosquitoes, in the gastric environment and incorporated these into our dosage form, which then delivered a sustained therapeutic dose of ivermectin for up to 14 days in our swine model. Further, by using mathematical models of malaria transmission that incorporate the lethal effect of ivermectin against malaria-transmitting mosquitoes, we demonstrated that this system will boost the efficacy of mass drug administration toward malaria elimination goals. Encapsulated, gastric-resident dosage forms for ultra-long-acting drug delivery have the potential to revolutionize treatment options for malaria and other diseases that affect large populations around the globe for which treatment adherence is essential for efficacy.


Assuntos
Antimaláricos/administração & dosagem , Sistemas de Liberação de Medicamentos , Ivermectina/administração & dosagem , Malária/tratamento farmacológico , Estômago/efeitos dos fármacos , Administração Oral , Animais , Cápsulas , Culicidae , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Endoscopia , Análise de Elementos Finitos , Humanos , Malária/transmissão , Modelos Teóricos , Polímeros/química , Suínos
3.
J Control Release ; 202: 93-100, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25662228

RESUMO

Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet non-specific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20kHz and 1MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20kHz alone. Additionally, LTRs generated by treatment with 20kHz+1MHz were found to be more permeable than those generated with 20kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20kHz+1MHz were calculated to be significantly larger than the pores in skin treated with 20kHz alone. This demonstrates for the first time that LTRs generated with 20kHz+1MHz are also more permeable than those generated with 20kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20kHz+1MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo.


Assuntos
Preparações Farmacêuticas/administração & dosagem , Ultrassom , Administração Cutânea , Animais , Feminino , Técnicas In Vitro , Pele/metabolismo , Absorção Cutânea , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...