Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioessays ; 42(8): e1900241, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32638410

RESUMO

Dietary restriction (DR) is the most consistent environmental manipulation to extend lifespan. Originally thought to be caused by a reduction in caloric intake, recent evidence suggests that macronutrient intake underpins the effect of DR. The prevailing evolutionary explanations for the DR response are conceptualized under the caloric restriction paradigm, necessitating reconsideration of how or whether these evolutionary explanations fit this macronutrient perspective. In the authors' opinion, none of the current evolutionary explanations of DR adequately explain the intricacies of observed results; instead a context-dependent combination of these theories is suggested which is likely to reflect reality. In reviewing the field, it is proposed that the ability to track the destination of different macronutrients within the body will be key to establishing the relative roles of the competing theories. Understanding the evolution of the DR response and its ecological relevance is critical to understanding variation in DR responses and their relevance outside laboratory environments.


Assuntos
Restrição Calórica , Longevidade
2.
J Evol Biol ; 33(3): 309-317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31705829

RESUMO

When future reproductive potential is threatened, for example following infection, the terminal investment hypothesis predicts that individuals will respond by investing preferentially in current reproduction. Terminal investment involves reallocating resources to current reproductive effort, so it is likely to be influenced by the quantity and quality of resources acquired through diet. Dietary protein specifically has been shown to impact both immunity and reproduction in a range of organisms, but its impact on terminal investment is unclear. We challenged females from ten naturally derived fruit fly (Drosophila melanogaster) genotypes with the bacterial pathogen Pseudomonas aeruginosa. We then placed these on either a standard or isocaloric high-protein diet, and measured multiple components of reproductive investment. As oogenesis requires protein, and flies increase egg production with protein intake, we hypothesized that terminal investment would be easier to observe if protein was not already limiting. Oral exposure to the pathogen triggered an increase in reproductive investment. However, whereas flies feeding on a high-protein diet increased the number of eggs laid when exposed to P. aeruginosa, those fed the standard diet did not increase the number of eggs laid but increased egg-to-adult viability following infection. This suggests that the specific routes through which flies terminally invest are influenced by the protein content of the maternal diet. We discuss the importance of considering diet and natural routes of infection when measuring nonimmunological defences.


Assuntos
Dieta , Proteínas Alimentares/imunologia , Drosophila melanogaster/imunologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Feminino , Oogênese/fisiologia , Pseudomonas aeruginosa/fisiologia , Análise de Sobrevida
3.
Aging Cell ; 18(1): e12868, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456818

RESUMO

Dietary restriction (DR) is one of the main experimental paradigms to investigate the mechanisms that determine lifespan and aging. Yet, the exact nutritional parameters responsible for DR remain unclear. Recently, the advent of the geometric framework of nutrition (GF) has refocussed interest from calories to dietary macronutrients. However, GF experiments focus on invertebrates, with the importance of macronutrients in vertebrates still widely debated. This has led to the suggestion of a fundamental difference in the mode of action of DR between vertebrates and invertebrates, questioning the suggestion of an evolutionarily conserved mechanism. The use of dietary dilution rather than restriction in GF studies makes comparison with traditional DR studies difficult. Here, using a novel nonmodel vertebrate system (the stickleback fish, Gasterosteus aculeatus), we test the effect of macronutrient versus calorie intake on key fitness-related traits, both using the GF and avoiding dietary dilution. We find that the intake of macronutrients rather than calories determines both mortality risk and reproduction. Male mortality risk was lowest on intermediate lipid intakes, and female risk was generally reduced by low protein intakes. The effect of macronutrient intake on reproduction was similar between the sexes, with high protein intakes maximizing reproduction. Our results provide, to our knowledge, the first evidence that macronutrient, not caloric, intake predicts changes in mortality and reproduction in the absence of dietary dilution. This supports the suggestion of evolutionary conservation in the effect of diet on lifespan, but via variation in macronutrient intake rather than calories.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Restrição Calórica , Dieta , Ingestão de Energia , Reprodução/fisiologia , Smegmamorpha/fisiologia , Animais , Feminino , Lipídeos/química , Masculino , Análise de Sobrevida
4.
Artigo em Inglês | MEDLINE | ID: mdl-29335371

RESUMO

Telomere length (TL) has become a biomarker of increasing interest within ecology and evolutionary biology, and has been found to predict subsequent survival in some recent avian studies but not others. Here, we undertake the first formal meta-analysis to test whether there is an overall association between TL and subsequent mortality risk in vertebrates other than humans and model laboratory rodents. We identified 27 suitable studies and obtained standardized estimates of the hazard ratio associated with TL from each. We performed a meta-analysis on these estimates and found an overall significant negative association implying that short telomeres are associated with increased mortality risk, which was robust to evident publication bias. While we found that heterogeneity in the hazard ratios was not explained by sex, follow-up period, maximum lifespan or the age group of the study animals, the TL-mortality risk association was stronger in studies using qPCR compared to terminal restriction fragment methodologies. Our results provide support for a consistent association between short telomeres and increased mortality risk in birds, but also highlight the need for more research into non-avian vertebrates and the reasons why different telomere measurement methods may yield different results.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.


Assuntos
Aves/fisiologia , Longevidade/fisiologia , Encurtamento do Telômero , Telômero/fisiologia , Fatores Etários , Animais , Aves/genética , Modelos Estatísticos , Mortalidade , Razão de Chances , Análise de Regressão , Fatores de Risco , Fatores Sexuais , Telômero/genética
5.
Ecol Evol ; 7(23): 10056-10065, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29238536

RESUMO

Diet is an important determinant of fitness-related traits including growth, reproduction, and survival. Recent work has suggested that variation in protein:lipid ratio and particularly the amount of protein in the diet is a key nutritional parameter. However, the traits that mediate the link between dietary macronutrient ratio and fitness-related traits are less well understood. An obvious candidate is body composition, given its well-known link to health. Here, we investigate the relationship between dietary and body macronutrient composition using a first-generation laboratory population of a freshwater fish, the three-spine stickleback (Gasterosteus aculeatus). Carbohydrate is relatively unimportant in the diet of predatory fish, facilitating the exploration of how dietary protein-to-lipid ratio affects their relative deposition in the body. We find a significant effect of lipid intake, rather than protein, on body protein:lipid ratio. Importantly, this was not a result of absorbing macronutrients in relation to their relative abundance in the diet, as the carcass protein:lipid ratios differed from those of the diets, with ratios usually lower in the body than in the diet. This indicates that individuals can moderate their utilization, or uptake, of ingested macronutrients to reach a target balance within the body. We found no effect of diet on swimming endurance, activity, or testes size. However, there was an effect of weight on testes size, with larger males having larger testes. Our results provide evidence for the adjustment of body protein:lipid ratio away from that of the diet. As dietary lipid intake was the key determinant of body composition, we suggest this occurs via metabolism of excess protein, which conflicts with the predictions of the protein leverage hypothesis. These results could imply that the conversion and excretion of protein is one of the causes of the survival costs associated with high-protein diets.

6.
BMC Evol Biol ; 16(1): 199, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27717308

RESUMO

BACKGROUND: Dietary restriction (DR), a reduction in the amount of food or particular nutrients eaten, is the most consistent environmental manipulation to extend lifespan and protect against age related diseases. Current evolutionary theory explains this effect as a shift in the resolution of the trade-off between lifespan and reproduction. However, recent studies have questioned the role of reproduction in mediating the effect of DR on longevity and no study has quantitatively investigated the effect of DR on reproduction across species. RESULTS: Here we report a comprehensive comparative meta-analysis of the effect of DR on reproduction. In general, DR reduced reproduction across taxa, but several factors moderated this effect. The effect of DR on reproduction was greater in well-studied model species (yeast, nematode worms, fruit flies and rodents) than non-model species. This mirrors recent results for longevity and, for reproduction, seems to result from a faster rate of decline with decreasing resources in model species. Our results also suggested that not all reproductive traits are affected equally by DR. High and moderate cost reproductive traits suffered a significant reduction with DR, but low cost traits, such as ejaculate production, did not. Although the effect of DR on reproduction was stronger in females than males, this sex difference reduced to near zero when accounting for other co-factors such as the costliness of the reproductive trait. Thus, sex differences in the effect of DR on longevity may be due to a failure to expose males to as complete a range of the costs of reproduction as females. CONCLUSIONS: We suggest that to better understand the generality of the effect of DR, future studies should attempt to address the cause of the apparent model species bias and ensure that individuals are exposed to as many of the costs of reproduction as possible. Furthermore, our meta-analytic approach reveals a general shortage of DR studies that record reproduction, particularly in males, as well as a lack of direct side-by-side comparisons of the effect of DR on males and females.


Assuntos
Evolução Biológica , Restrição Calórica , Longevidade , Reprodução , Animais , Feminino , Humanos , Masculino , Caracteres Sexuais , Leveduras
7.
Physiol Behav ; 131: 111-4, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24769021

RESUMO

Postcopulatory sexual selection arising from female multiple mating leads to the evolution of ejaculates that maximize a male's reproductive success under sperm competition. Where the risk of sperm competition is variable, optimal fitness may be achieved by plastically altering ejaculate characteristics in response to the prevailing sperm competition environment. In the model species Drosophila melanogaster, males expecting to encounter sperm competition mate for longer and transfer more accessory proteins and sperm. Here we show that after being housed with a single rival for one week, the seminal vesicles of male D. melanogaster contain a significantly greater proportion of live sperm than those of males maintained alone, indicating adaptive adjustment of sperm quality in response to the perceived risk of sperm competition. This effect is due to an increase in the number of live sperm produced, indicating that males upregulate sperm production in response to the presence of rivals. Our data suggest that males show plasticity in the rate of spermatogenesis that is adaptive in the context of a fluctuating sperm competition environment.


Assuntos
Comportamento Competitivo/fisiologia , Drosophila melanogaster/fisiologia , Espermatogênese/fisiologia , Animais , Contagem de Células , Morte Celular , Sobrevivência Celular , Sinais (Psicologia) , Abrigo para Animais , Masculino , Reprodução/fisiologia , Glândulas Seminais/citologia , Espermatozoides/fisiologia
8.
Biol Lett ; 9(2): 20121188, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23445944

RESUMO

Sperm competition between the ejaculates of multiple males for the fertilization of a given set of ova is taxonomically widespread. Males have evolved remarkable adaptations to increase their reproductive success under postcopulatory sexual selection, which in many species includes the ability to modify behaviour and ejaculate characteristics plastically to match the perceived level of sperm competition. Males of the model species Drosophila melanogaster increase mating duration and modify seminal fluid composition in response to short-term changes in sperm competition risk. If these responses increase a male's total investment in reproduction, he must either trade-off this cost against other life-history traits or suffer reduced survival. We tested whether mounting a plastic sperm competition response bears an instantaneous survival cost, and instead found that male D. melanogaster exposed to a high risk of sperm competition survive 12 per cent longer than those at low risk, equating to a 49 per cent reduction in the hourly hazard of death. This striking effect was found only among virgins: the high cost of mating in this species eliminates any such benefit among non-virgin males. Our results suggest that the improvement in survival found among virgins may be a product of males' tactical responses to sperm competition.


Assuntos
Drosophila melanogaster/fisiologia , Comportamento Sexual Animal/fisiologia , Espermatozoides/fisiologia , Animais , Comportamento Competitivo/fisiologia , Ecossistema , Feminino , Longevidade/fisiologia , Masculino , Modelos Biológicos , Reprodução , Fatores de Risco , Análise de Sobrevida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...