Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(21): 212501, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066430

RESUMO

The Galactic 1.809-MeV γ-ray signature from the ß decay of ^{26g}Al is a dominant target of γ-ray astronomy, of which a significant component is understood to originate from massive stars. The ^{26g}Al(p,γ)^{27}Si reaction is a major destruction pathway for ^{26g}Al at stellar temperatures, but the reaction rate is poorly constrained due to uncertainties in the strengths of low-lying resonances in ^{27}Si. The ^{26g}Al(d,p)^{27}Al reaction has been employed in inverse kinematics to determine the spectroscopic factors, and hence resonance strengths, of proton resonances in ^{27}Si via mirror symmetry. The strength of the 127-keV resonance is found to be a factor of 4 higher than the previously adopted upper limit, and the upper limit for the 68-keV resonance has been reduced by an order of magnitude, considerably constraining the ^{26g}Al destruction rate at stellar temperatures.

2.
Phys Rev Lett ; 109(17): 172501, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215181

RESUMO

Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

3.
Phys Rev Lett ; 108(19): 192701, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003029

RESUMO

The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be(d,​p) reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an nℓj=2s(1/2) state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p(1/2) state.

4.
Nature ; 465(7297): 454-7, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20505723

RESUMO

Atomic nuclei have a shell structure in which nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in (133)Sn that lie outside the double shell closure present at the short-lived nucleus (132)Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of (132)Sn.

5.
Phys Rev Lett ; 102(15): 152502, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518624

RESUMO

The rate of the (17)F(p,gamma)(18)Ne reaction is important in various astrophysical events. A previous (17)F(p,p)(17)F measurement identified a 3;{+} state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the (17)F(p,gamma)(18)Ne reaction using a mixed beam of (17)F and (17)O at ORNL. The resonance strength for the 3;{+} resonance in (18)Ne was found to be omegagamma = 33 +/- 14(stat) +/-1 7(syst) meV, corresponding to a gamma width of Gamma_{gamma} = 56 +/- 24(stat) +/- 30(syst) meV. An upper limit on the direct capture of S(E)

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...