Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10250, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715548

RESUMO

Saccharum officinarum Linn. (sugarcane, Family-Poaceae) is employed in Ibibio traditional medicine for the treatment of various infections and diseases such as malaria. We This study aims to assess the antiplasmodial effect of the leaf extract and fractions on human malaria parasite (Plasmodium falciparum) in vitro, and rodent malaria parasite (P. berghei) in vivo, and analyse the bioactive components of the active fraction(s). The leaf extract and fractions of S. officinarum were prepared and their growth inhibitory effects tested against the chloroquine resistant P. falciparum strain (Dd2) and P. berghei infection in mice. An acute toxicity of the extract was determined. A combination of gas chromatography and liquid chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy was applied for metabolites profiling of crude extract and active fractions. The leaf extract and fractions demonstrated moderate activity against P. falciparum with the dichloromethane fraction producing the most potent activity (EC50 = 15.4 µg/mL). The leaf extract (170-510 mg/kg, p.o., LD50 = 1732 mg/kg) and fractions demonstrated significant (p < 0.05-0.001) effect on P. berghei infection in prophylactic  tests as well as in established infection with n-butanol fractions producing the highest effect. An unusual sulphur-containing compound, dilaurylthiodipropionate, fatty acids, phenolic acids, flavonoid and flavonoid glycoside were identified in the active fractions. These results give credence to the use of sugarcane leaves as malarial remedy locally by confirming the in vitro and in vivo antiplasmodial potential of leaf extract/fractions of S. officinarum.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Saccharum , Animais , Antimaláricos/uso terapêutico , Flavonoides/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Extratos Vegetais/química , Folhas de Planta , Plasmodium berghei , Plasmodium falciparum
2.
Appl Microbiol Biotechnol ; 106(7): 2433-2444, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35355096

RESUMO

Artemisinin is a component part of current frontline medicines for the treatment of malaria. The aim of this study is to make analogues of artemisinin using microbial transformation and evaluate their in vitro antimalarial activity. A panel of microorganisms were screened for biotransformation of artemisinin (1). The biotransformation products were extracted, purified and isolated using silica gel column chromatography and semi-preparative HPLC. Spectroscopic methods including LC-HRMS, GC-MS, FT-IR, 1D and 2D NMR were used to elucidate the structure of the artemisinin metabolites.1H NMR spectroscopy was further used to study the time-course biotransformation. The antiplasmodial activity (IC50) of the biotransformation products of 1 against intraerythrocytic cultures of Plasmodium falciparum were determined using bioluminescence assays. A filamentous fungus Aspergillus niger CICC 2487 was found to possess the best efficiency to convert artemisinin (1) to a novel derivative, 4-methoxy-9,10-dimethyloctahydrofuro-(3,2-i)-isochromen-11(4H)-one (2) via ring rearrangement and further degradation, along with three known derivatives, compound (3), deoxyartemisinin (4) and 3-hydroxy-deoxyartemisinin (5). Kinetic study of the biotransformation of artemisinin indicated the formation of artemisinin G as a key intermediate which could be hydrolyzed and methylated to form the new compound 2. Our study shows that the anti-plasmodial potency of compounds 2, 3, 4 and 5 were ablated compared to 1, which attributed to the loss of the unique peroxide bridge in artemisinin (1). This is the first report of microbial degradation and ring rearrangement of artemisinin with subsequent hydrolysis and methoxylation by A.niger. KEY POINTS: • Aspergillus niger CICC 2487 was found to be efficient for biotransformation of artemisinin • A novel and unusual artemisinin derivative was isolated and elucidated • The peroxide bridge in artemisinin is crucial for its high antimalarial potency • The pathway of biotransformation involves the formation of artemisinin G as a key intermediate.


Assuntos
Antimaláricos , Antimaláricos/química , Artemisininas , Aspergillus , Aspergillus niger/metabolismo , Biotransformação , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...