Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Naturae ; 16(1): 14-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698961

RESUMO

Modern biomedical research often requires a three-dimensional microscopic analysis of the ultrastructure of biological objects and materials. Conceptual technical and methodological solutions for three-dimensional structure reconstruction are needed to improve the conventional optical, electron, and probe microscopy methods, which to begin with allow one to obtain two-dimensional images and data. This review discusses the principles and potential applications of such techniques as serial section transmission electron microscopy; techniques based on scanning electron microscopy (SEM) (array tomography, focused ion beam SEM, and serial block-face SEM). 3D analysis techniques based on modern super-resolution optical microscopy methods are described (stochastic optical reconstruction microscopy and stimulated emission depletion microscopy), as well as ultrastructural 3D microscopy methods based on scanning probe microscopy and the feasibility of combining them with optical techniques. A comparative analysis of the advantages and shortcomings of the discussed approaches is performed.

2.
Dokl Biol Sci ; 509(1): 103-106, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37208575

RESUMO

Developing technologies for efficient targeted drug delivery for oncotherapy requires new methods to analyze the features of micro- and nanoscale distributions of antitumor drugs in cells and tissues. A new approach to three-dimensional analysis of the intracellular distribution of cytostatics was developed using fluorescence scanning optical-probe nanotomography. A correlative analysis of the nanostructure and distribution of injected doxorubicin in MCF-7 human breast adenocarcinoma cells revealed the features of drug penetration and accumulation in the cell. The technology is based on the principles of scanning optical probe nanotomography and is applicable to studying the distribution patterns of various fluorescent or fluorescence-labelled substances in cells and tissues.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Humanos , Feminino , Células MCF-7 , Corantes Fluorescentes , Doxorrubicina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adenocarcinoma/tratamento farmacológico
3.
Dokl Biol Sci ; 513(Suppl 1): S51-S54, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38430297

RESUMO

Nanoscale morphological features of branched processes of glial cells may be of decisive importance for neuron-astrocyte interactions in health and disease. The paper presents the results of a correlation analysis of images of thin processes of astrocytes in nervous tissue of the mouse brain, which were obtained by scanning probe microscopy (SPM) and transmission electron microscopy (TEM) with high spatial resolution. Samples were prepared and imaged using a unique hardware combination of ultramicrotomy and SPM. Astrocyte details with a thickness of several tens of nanometers were identifiable in the images, making it possible to reconstruct the three-dimensional structure of astrocytic processes by integrating a series of sequential images of ultrathin sections of nervous tissue in the future.


Assuntos
Astrócitos , Tecido Nervoso , Camundongos , Animais , Microscopia Eletrônica de Transmissão , Encéfalo , Neurônios , Microscopia Eletrônica de Varredura
4.
Dokl Biochem Biophys ; 504(1): 115-117, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759138

RESUMO

The development of effective biomedical technologies using magnetic nanoparticles (MNPs) for the tasks of oncotherapy and nanodiagnostics requires the development and implementation of new methods for the analysis of micro- and nanoscale distributions of MNPs in the volume of cells and tissues. The paper presents a new approach to three-dimensional analysis of MNP distributions - scanning magnetic force nanotomography as applied to the study of tumor tissues. Correlative reconstruction of MNP distributions and nanostructure features of the studied tissues made it possible to quantitatively estimate the parameters of three-dimensional distributions of composite nanoparticles based on silicon and iron oxide obtained by femtosecond laser ablation and injected intravenously and intratumorally into tumor tissue samples of B16/F1 mouse melanoma. The developed technology based on the principles of scanning probe nanotomography is applicable for studying the features of three-dimensional micro- and nanoscale distributions of magnetic nanoparticles in biomaterials, cells and tissues of various types.


Assuntos
Nanopartículas de Magnetita , Melanoma Experimental , Nanopartículas , Animais , Materiais Biocompatíveis , Fenômenos Magnéticos , Melanoma Experimental/diagnóstico por imagem , Camundongos , Nanopartículas/química
5.
Nanoscale ; 5(19): 9317-23, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23949098

RESUMO

Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7-1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs), have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i) J-aggregates are coupled to QDs by Förster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra.

7.
Biofizika ; 48(3): 436-42, 2003.
Artigo em Russo | MEDLINE | ID: mdl-12815854

RESUMO

The kinetics of the hydrolysis of the lactone ring of a hybrid molecule containing the molecules of the antitumor drug camptothecin and a derivative of the antibiotic netropsines, which is highly affine and specific to the DNA A-T sequences was investigated. It was shown that intramolecular interaction significantly slows down the rate of hydrolysis but does not change the equilibrium ratio of concentrations of the lactone and carboxylate forms of the camptothecin fragment of the hybrid molecule, which corresponds to the pH value. The use of intramolecular interaction for controlling the kinetics of the lactone/carboxylate transition makes it possible to create the drugs of the camptothecin family, which preserve the biologically active lactone form under the physiological conditions for a longer time and, therefore, are more effective as anticancer agents.


Assuntos
Camptotecina/química , Ácidos Carboxílicos/química , Lactonas/química , Netropsina/química , Hidrólise , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...