Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230199, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38736332

RESUMO

The DESTINY+(Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) Dust Analyser (DDA) is a state-of-the-art dust telescope for the in situ analysis of cosmic dust particles. As the primary scientific payload of the DESTINY+ mission, it serves the purpose of characterizing the dust environment within the Earth-Moon system, investigating interplanetary and interstellar dust populations at 1 AU from the Sun and studying the dust cloud enveloping the asteroid (3200) Phaethon. DDA features a two-axis pointing platform for increasing the accessible fraction of the sky. The instrument combines a trajectory sensor with an impact ionization time-of-flight mass spectrometer, enabling the correlation of dynamical, physical and compositional properties for individual dust grains. For each dust measurement, a set of nine signals provides the surface charge, particle size, velocity vector, as well as the atomic, molecular and isotopic composition of the dust grain. With its capabilities, DDA is a key asset in advancing our understanding of the cosmic dust populations present along the orbit of DESTINY+. In addition to providing the scientific context, we are presenting an overview of the instrument's design and functionality, showing first laboratory measurements and giving insights into the observation planning. This article is part of a theme issue 'Dust in the Solar System and beyond'.

2.
Rev Sci Instrum ; 83(7): 075108, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852725

RESUMO

A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

3.
Rev Sci Instrum ; 82(9): 095111, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974623

RESUMO

Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut für Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 µm and 5 µm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.

4.
Rapid Commun Mass Spectrom ; 23(24): 3895-906, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19924687

RESUMO

The study of hyper-velocity impacts of micrometeoroids is important for the calibration of dust sensors in space applications. For this purpose, submicron-sized synthetic dust grains comprising either polystyrene or poly[bis(4-vinylthiophenyl)sulfide] were coated with an ultrathin overlayer of an electrically conductive organic polymer (either polypyrrole or polyaniline) and were accelerated to speeds between 3 and 35 km s(-1) using the Heidelberg Dust Accelerator facility. Time-of-flight mass spectrometry was applied to analyse the resulting ionic impact plasma using a newly developed Large Area Mass Analyser (LAMA). Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 u. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. Impact velocities of between 10 and 35 km s(-1) are suitable for a principal identification of organic materials in micrometeoroids, whereas impact speeds below approximately 10 km s(-1) allow for an even more detailed analysis. Molecular ions and fragments reflect components of the parent molecule, providing determination of even complex organic molecules embedded in a dust grain. In contrast to previous measurements with the Cosmic Dust Analyser instrument, the employed LAMA instrument has a seven times higher mass resolution--approximately 200--which allowed for a detailed analysis of the complex mass spectra. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds.


Assuntos
Poeira Cósmica/análise , Espectrometria de Massas/métodos , Nanopartículas/química , Espectrometria de Massas/instrumentação , Compostos Orgânicos/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...