Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461752

RESUMO

Drought is known to be the most important constraint to the growth and yield of agricultural products in the world, and plant symbiosis with arbuscular mycorrhizal fungi (AMF) can be a way to reduce drought stress negative impacts. A two-year experiment to investigate the factorial combination of mycorrhizal fungi (Glomus mosseae, Glomus intraradices, Control) and phosphorus fertilizer (application and non-application of phosphorus) on fruit yield and phenolic acids changes bitter gourd under different irrigation regimes as a split factorial based on a randomized complete block design. Three irrigation regimes, including irrigation after 20%, 50%, and 80% available soil water content depletion (ASWD), were considered in the main plots. The results showed that under water deficit stress, fruit yield and physiological (photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), RWC, total chlorophyll, and root colonization) parameters decreased compared to 20% ASWD, and biochemical (proline, soluble sugar, MDA, CAT, SOD, phenol) parameters and fruit phenolic acids (caffeic acid, coumaric acid, ferulic acid) increased. However, the inoculation of AMF and phosphorus fertilizer in three irrigation regimes decreased MDA content, but physiological and biochemical parameters and fruit phenolic acids were increased. In this study, the factorial combination of AMF and sufficient phosphorus improved the resistance of bitter gourd to water deficit, and this not only improved fruit yield but also increased fruit phenolic acids under 80% ASWD, which can be an innovation in the management of water resources and the production industry of medicinal plants with high antioxidant properties in water deficit areas.


Assuntos
Momordica charantia , Micorrizas , Fertilizantes , Frutas , Micorrizas/fisiologia , Fósforo , Água
2.
Physiol Mol Biol Plants ; 29(1): 109-120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733840

RESUMO

Elicitors, irrigation regimes and harvest times influence the content, yield and compound of the essential oil (EO) in Salvia officinalis (sage), through changes in biomass dynamics and biosynthetic pathways. A two-year field experiment was conducted to determine if foliar application of putrescine under optimum and deficit stress conditions would favorably affect EO yield, content and profile of sage harvested in spring and summer. The response of dry weight, EO yield and content, myrcene and borneol concentrations to irrigation regime and putrescine concentration can be expressed by a quadratic model. The maximum dry weight (182.63 g m-2) and EO yield (1.68 g m-2) were predicted under irrigation regimes of 9.06% and 27.75% available soil water depletion (ASWD), respectively. The highest EO content (1.05%) was predicted under 3.04 mM of putrescine. Based on results obtained from GC/MS analyses, 25 compounds (mostly monoterpenes) were identified in the EO of sage. Among EO compounds, α-thujone (54.08%), 1, 8-cineole (17.87%), pinocarvone (14.30%), ß-thujone (7.97%) and camphor (8.76%) in turn were the most abundant. The concentration of myrcene was higher in spring than summer under the irrigation regimes of 60% and 80% ASWD. The myrcene concentration reached its maximum (4.53%) under the irrigation regime of 86.5% ASWD. The irrigation regimes of 48.03% and 45.6% ASWD caused the highest borneol concentrations of 1.47% and 1.41% by application of 1.5 mM and 2.25 mM putrescine, respectively. All treatments tested on sage, particularly harvest time, can play an important role in the improvement of EO quality and quantity. Averaged over both years, the irrigation regime of nearly 30% ASWD resulted in the highest EO yield harvested with greater quantity and better quality in summer. The EO content and quality changed slightly with the application of putrescine, without significant effect on yield.

3.
Plant Physiol Biochem ; 191: 55-66, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183672

RESUMO

Drought, as an important challenge in Iran, affects all growth indicators for plants. Application of plant growth promoting microorganisms (PGPM) can reduce the detrimental effects of water deficit on plants. Two separate field experiments were conducted at the Tehran and Hashtrood sites, Iran in 2019 to study the influences of Azotobacter chroococcum (Az) and Piriformospora indica (Pi) or Az + Pi on growth, physio-biochemical properties and oil content of soybean (Glycine max L.) under water deficit conditions. Although water deficit dramatically reduced the plant height, percent vegetation cover and relative water content (RWC), plots treated with Az and Pi exhibited higher performance mentioned traits at both sites. Besides, co-inoculation of Az and Pi increased proline in Tehran (48.85 and 29.24% in leaf and root, respectively) and Hashtrood (46.91 and 48.91% in leaf and root, respectively) under severe water deficit. Accumulation of glycine betaine, soluble sugars and proteins increased for plots which received Az and Pi. Under severe water deficit conditions, the co-inoculation with Az and Pi enhanced the oil content of soybean by 12.87 and 9.37% at Tehran and Hashtrood sites respectively. Application of Az and Pi resulted in reducing the adverse effects of water deficit on oil quality of soybean by increasing the linoleic and linolenic acid in oil. Moreover, inoculation of soybean with Az and Pi can provide drought tolerance by improving ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) activity. However, co-inoculation with Az and Pi was generally more effective in the alleviation of water deficit detrimental effects than sole inoculation with Az and Pi. Consequently, it can be a good approach for improving tolerance, growth and oil production of soybean under water deficit conditions.


Assuntos
Glycine max , Água , Antioxidantes/metabolismo , Ascorbato Peroxidases , Betaína , Catalase/metabolismo , Secas , Irã (Geográfico) , Prolina/metabolismo , Glycine max/metabolismo , Açúcares/farmacologia , Superóxido Dismutase/metabolismo , Água/metabolismo , Ácido alfa-Linolênico/farmacologia
4.
Plants (Basel) ; 11(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631705

RESUMO

Salinity is an important challenge around the world, effecting all physiological and biochemical processes of plants. It seems that seed priming can diminish the negative impacts of salinity. To study the effects of hydro-priming and inoculation with Piriformospora indica (Pi) and Azotobacter chroococcum (Az) on physio-biochemical traits, flavonolignans and fatty acids composition of milk thistle under saline conditions, a greenhouse experiment was carried out. Our results indicated that under salinity, seed priming, especially Pi, improved physio-biochemical properties in milk thistle. Under 120 mM NaCl, inoculation with Pi increased membrane stability index (MSI) and relative water content (RWC) (by 21.86 and 33.43%, respectively). However, peroxidase (POX) (5.57- and 5.68-fold in roots and leaves, respectively), superoxide dismutase (SOD) (4.74- and 4.44-fold in roots and leaves, respectively), catalase (CAT) (6.90- and 8.50-fold in roots and leaves, respectively) and ascorbate peroxidase (APX) (5.61- and 5.68-fold in roots and leaves, respectively) activities increased with increasing salinity. Contrary to salinity, hydro-priming with Az and Pi positively altered all these traits. The highest content of the osmolytes, adenosine triphosphate (ATP) content and rubisco activity were recorded in Pi treatments under 120 mM NaCl. Stearic acid (20.24%), oleic acid (21.06%) and palmitic acid (10.48%) increased, but oil content (3.81%), linolenic and linoleic acid content (22.21 and 15.07%, respectively) decreased under saline conditions. Inoculations of Pi positively altered all these traits. The present study indicated that seed priming with Pi under 120 mM NaCl resulted in maximum silychristin, taxidolin, silydianin, isosilybin, silybin and silymarin of milk thistle seeds.

5.
Food Sci Nutr ; 10(5): 1431-1441, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35592300

RESUMO

A 2-year (2017-2018) field experiment was performed to specify if the foliar application of putrescine (PUT) under optimum and water-deficit stress (WDS) conditions would favorably affect leaf gas exchange, greenness, chlorophyll fluorescence parameters, pigments, sodium (Na), potassium (K), as well as yield and content of the essential oil (EO) relationships in Salvia officinalis L. (sage) in spring (cutting 1) and summer (cutting 2). Based on the results analysis of variance, the effects of WDS, PUT, and cutting time were significant for the dry weight, leaf area index (LAI), EO content, EO yield, chlorophyll (Chl) t, carotenoid, Na, and K of sage. According to regression results, the response of EO content, EO yield, non-photochemical quenching (NPQ), spad, Chl a, Chl t, K, and K/Na to WDS can be expressed by a quadratic model, indicating that they would attain their maximum in 75.5%, 34.86%, 38.33%, 84.13% 60%, 70%, 50.40%, and 40.28% available soil water depletion (ASWD), respectively. The response of dry weight, LAI, EO content, EO yield, Fv/Fm, spad, ΦpsII, Chl a, Chl b, Chl t, carotenoid, K, and K/Na to PUT can be expressed by a quadratic model, showing that they would attain their most under 0.98, 1.14, 1.34, 1.16, 1.27, 1.18, 1.17, 1.25, 1.17, 1.27, 1.31, 1.21, and 1.19 mM of PUT, respectively. These findings suggest that, probably, the functions and structures of the photosynthetic system were further enhanced with PUT, thereby they can be promoting primary electron transfer in PSII. Also, stomatal and photosynthetic activity improved with increasing K levels with PUT.

6.
Saudi J Biol Sci ; 28(12): 7227-7240, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867026

RESUMO

Water stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, a two-year field experiment was conducted to determine the influence of putrescine (Put) on phytochemical, physiological, and growth parameters of Salvia officinalis L. under different irrigation regimes. The highest stem dry weight (56.05 and 65.21 g m-2) plus leaf dry weight (124.51 g m-2) were predicted in irrigation regimes of (20 and 40%) plus 20% available soil water was depleted (ASWD), respectively. Total phenolic content (TPC) was increased significantly under the irrigation regime of 80% with the application of distilled water in spring. TPC showed an increasing trend with increases in Put concentration under all irrigation regimes in both spring and summer. The highest total flavonoids content (TFC) in wavelengths of 415 and 367 nm were predicted in 2.25 mM Put. The highest ascorbate peroxidase (APX) activity (0.13 µmol mg-1 protein) was predicted in the irrigation regime of 20% with the application of distilled water in spring and summer. There was a significantly negative correlation coefficient between APX, TPC, and TFC. Indeed, there was a decreasing trend in APX and an increasing trend in TPC and TFC with increases in Put concentration under the irrigation regime of 20% ASWD. The highest hydroxyl radical scavenging activity (HRSA) values were obtained under irrigation regimes of 49.27% and 20% ASWD in spring and summer, respectively. There was an increasing trend in endogenous Put with increases in the Put concentration. The responses of compatible osmolytes to irrigation regime can be expressed by quadratic model, suggesting maximum proline (0.52 mg g-1), total reducing sugars (TRS) (0.37 mg g-1), xylose (0.68 mg g-1), and mannose (0.37 mg g-1) values would be obtained in irrigation regimes of 68.33%, 48.33%, 53.75%, and 56.25% ASWD, respectively.

7.
Sci Rep ; 11(1): 21997, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753954

RESUMO

To study the effects of foliar application of putrescine (distilled water (0), 0.75, 1.5, and 2.25 mM) and water deficit stress (20%, 40%, 60%, and 80% available soil water depletion (ASWD)) on the physiological, biochemical, and molecular attributes of Salvia officinalis L., a factorial experiment was performed in a completely randomized design with three replications in the growth chamber. The results of Real-Time quantitative polymerase chain reaction (qRT-PCR) analysis showed that putrescine concentration, irrigation regime, and the two-way interaction between irrigation regime and putrescine concentration significantly influenced cineole synthase (CS), sabinene synthase (SS), and bornyl diphosphate synthase (BPPS) relative expression. The highest concentration of 1,8-cineole, camphor, α-thujone, ß-thujone, CS, SS, and BPPS were obtained in the irrigation regime of 80% ASWD with the application of 0.75 mM putrescine. There was high correlation between expression levels of the main monoterpenes synthase and the concentration of main monoterpenes. The observed correlation between the two enzyme activities of ascorbate peroxidase (APX) and catalase (CAT) strongly suggests they have coordinated action. On the other hand, the highest peroxidase (PO) and superoxide dismutase (SOD) concentrations were obtained with the application of 0.75 mM putrescine under the irrigation regime of 40% ASWD. Putrescine showed a significant increase in LAI and RWC under water deficit stress. There was an increasing trend in endogenous putrescine when putrescine concentration was increased in all irrigation regimes. Overall, the results suggest that putrescine may act directly as a stress-protecting compound and reduced H2O2 to moderate the capacity of the antioxidative system, maintain the membrane stability, and increase secondary metabolites under water deficit stress.


Assuntos
Putrescina/metabolismo , Salvia officinalis/fisiologia , Estresse Fisiológico , Água , Regulação da Expressão Gênica de Plantas , Salvia officinalis/genética , Salvia officinalis/metabolismo , Terpenos/metabolismo
8.
Food Sci Nutr ; 9(5): 2620-2643, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026077

RESUMO

Salinity stress is one of the main limiting factors of medicinal plant growth and may affect their characteristics and chemical composition. In order to evaluate the response of different species of Iranian mint to salinity stress, an experiment was designed in greenhouse conditions. In this experiment, six Iranian mint species were cultivated in pots under different salinity stress including 0, 2.5, 5, and 7.5 dS/m. The chlorophyll indices (a, b, total, and a/b ratio), carotenoids, total anthocyanin, total phenolic and flavonoid content, antioxidant activity, dry matter yield, and essential oil content were measured in two different harvest stages. Salinity stress affected various measured traits. The results showed that despite the negative effect of salinity stress on photosynthetic pigments, in some ecotypes and species, photosynthetic pigments were not affected by salinity stress. The amount of total phenolic content, total flavonoid content, and total anthocyanin increased in response to salinity stress. The dry matter decreased under salinity stress, but the content of essential oil increased as a result of salinity stress increment. The results of PCA biplot showed that the E16 and E18 ecotypes were separated by a large distance. Among the various ecotypes, E18 had the most desirable traits which can be recognized as a salt-tolerant ecotype. Also, piperita species was the best among the species in all salinity stress levels.

9.
Heliyon ; 6(10): e05076, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33102832

RESUMO

In order to develop nanotechnology application in the agricultural systems achieving more sustainability in the environment, we have used different nano-carriers for phosphate solubilizing bacteria. The viability and efficacy of two bacterial species; Pseudomonas putida (PP20) and Pseudomonas kilonensis (PK11) in solubilizing phosphate sources (i.e., tricalcium phosphate and hydroxyapatite) with different nano-carriers including nanoclay, natural char micro-particles (NCMPs), nanoclay + alginate, NCMPs + alginate, and natural char nano-particles (NCNPs)+alginate were investigated. Clay, talc powder, and natural char (NC) were included for comparison. The synthesized NCNPs and NCMPs were characterized using FTIR, SEM and Boehm titration analyses. The results confirmed that the chemical oxidation of pristine char made many oxygenated functional groups on the surface of tiny and spherical NCNPs (14.8 nm) which caused their effective incorporation in the matrix of alginate beads. Results of phosphate solubilizing study showed that P. kilonensis was the superior species for viability and stability of its performance on solubilizing phosphorus. The six months evaluation showed that NCNPs + alginate and nanoclay + alginate carriers at both temperatures (4 °C and 28 °C), were the proficient carriers for preserving both bacteria. The results of solubilizing phosphorus sources revealed that both bacteria solubilized tricalcium phosphate more than hydroxyapatite and PK11 showed more privilege in this regard. In addition, the solubilizing index determined after storage for 6 months at 4 °C was higher for all the carriers. Analysis of variance for phosphatase activity revealed that embedding both bacteria in nanoclay + alginate carrier guaranteed the highest phosphatase activity, even though differences between this carrier and NCNPs + alginate and NCMPs + alginate were not significant for the PK11.

10.
Chem Biodivers ; 17(2): e1900399, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909554

RESUMO

Water stress is one of the main abiotic factors that reduces plant growth, mainly due to high evaporative demand and low water availability. In order to evaluate the effects of drought stress on certain morphological and physiological characteristics of two canola cultivars, we conducted a factorial experiment based on a completely randomized design. The findings show that drought stress exacerbations result in the plant's response to stress due to increased canola resistance caused by changes in plant pigments, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase and malondialdehyde, glucose, galactose, rhamnose and xylose. These in turn ultimately influence the morphological characteristics of canola. Drought stress reduces the concentration of carotenoids, chlorophyll a, chlorophyll b, total chlorophylls; however, glucose, galactose, rhamnose, xylose, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase, malondialdehyde (in leaves and roots) and the chlorophyll a and b ratios were increased. Reduction of plant height, stem height, root length, fresh and dry weight of canola treated with 300 g/l PEG compared to non-treatment were 0.264, 0.236, 0.394, 0.183 and 0.395, respectively. From the two canola cultivars, the morphological characteristics of the NIMA increased compared to the Ks7 cultivar. Interaction effects of cultivar and drought stress showed that NIMA cultivar without treatment had the highest number of morphological characteristics such as carotenoid concentration, chlorophyll a, chlorophyll b, total chlorophylls a and b, whereas the cultivar with 300 g/l PEG (drought stress) had the highest amount of proline, malondialdehyde, soluble sugars and enzymes in leaves and roots. Increasing activity of oxidative enzymes and soluble sugars in canola under drought stress could be a sign of their relative tolerance to drought stress.


Assuntos
Brassica napus/crescimento & desenvolvimento , Secas , Estresse Fisiológico , Brassica napus/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Glucose/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ramnose/metabolismo , Superóxido Dismutase/metabolismo
11.
Plant Physiol Biochem ; 133: 71-80, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30391814

RESUMO

The 2015-2020 dietary guidelines for Americans advise substituting total unsaturated fatty acids (∑UFA) for total saturated fatty acids (∑SFA). Thus, field experiments were carried out to verify the influence of irrigation regime (well-irrigated and water deficit) and fertilizers (chemical and biological) on the ratio of ∑UFA to ∑SFA of evening primrose seed oil. Therefore, two experiments were conducted at the experimental stations (arid and semi-arid) of Iran in 2014 and 2015. Experiments were conducted in a split factorial layout within a randomized complete block design with three replications. Water deficit significantly reduced UFA (omega 3, 6, 7 and 9), ∑UFA and ratio of ∑UFA to ∑SFA (especially in the arid region), but it increased SFA and ∑SFA (especially in the arid region). In fact, fatty acid quality (increased ratio of ∑UFA to ∑SFA) of evening primrose seed oil was significantly increased in well-irrigated compared to water deficit stress (especially in the semi-arid region). Bio-fertilizers (Azospirillum lipoferum and Glomus mosseae) and chemical fertilizers (urea + triple superphosphate) increased the ratio of ∑UFA to ∑SFA of evening primrose seed oil (especially in the semi-arid region), but fatty acid quality of evening primrose oil was significantly increased in bio-fertilizers compared to the chemical fertilizers (especially in the arid region).


Assuntos
Ácidos Graxos Insaturados/metabolismo , Fertilizantes , Oenothera biennis/metabolismo , Óleos de Plantas/metabolismo , Estresse Fisiológico , Desidratação/metabolismo
12.
Sci Rep ; 8(1): 11655, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076394

RESUMO

Plasma treatment is recognized as a suitable technology to improve germination efficiency of numerous seeds. The objective of this paper is to demonstrate whether cold air plasma can change the quality and quantity of wheat yield. Effects of cold plasma treatment on wheat (Pishgam variety) yield were studied by a randomized complete block design experiment at the Faculty of Agriculture of Tarbiat Modarres University, Iran, during 2015-17. Seeds were pre-treated with 80 W of cold plasma at four levels of time, 60, 120, 180 and 240 seconds. Plasma effects on yield and quality of wheat were determined by measuring plant photosynthesis, grain yield, biological yield, 1000-grain weight, total chlorophyll, carotenoid, anthocyanin, protein and starch content. Results showed that plasma treatments had positive effects on wheat characteristics, and treatment of 180 s had the highest stimulatory effect. In both years, cold plasma increased grain yield at 180 s, but decreased it at 240 s compared with control. The rate of plant photosynthesis, grain yield, 1000-grain weight, carotenoid and anthocyanin were enhanced at 180 s. The starch content and grain protein were enhanced at 120 s cold plasma application compared with control.


Assuntos
Grão Comestível/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Triticum/efeitos da radiação , Clorofila/química , Clorofila/metabolismo , Grão Comestível/crescimento & desenvolvimento , Irã (Geográfico) , Folhas de Planta/crescimento & desenvolvimento , Gases em Plasma , Ondas de Rádio , Estações do Ano , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Amido/química , Amido/metabolismo , Triticum/crescimento & desenvolvimento , Água/química
13.
Environ Sci Pollut Res Int ; 24(13): 12261-12272, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28357789

RESUMO

Morphological and biochemical responses of feverfew plants exposed to low (5 µM) and high (35 and 70 µM) levels of Cd or Cu were investigated. Increasing metal supply notably reduced the plant biomass. Elevated Cd and Cu levels also resulted in an increase in the leaf proline content. Besides, decrease in ascorbic acid (AsA) and glutathione (GSH) contents was similar in the leaves of Cd- and Cu-treated plants, indicating altered biosynthesis of AsA and GSH under metal excess. High metal doses stimulated increase in antioxidative enzyme activities that could be related to elevated hydrogen peroxide (H2O2) content and subsequent lipid peroxidation. Cd was typically more accumulated in shoots and roots than Cu, leading to higher translocation factor at high Cd doses. In terms of essential oil content, it seems that Cd had an inhibitory effect during the experiment, whereas Cu was found to stimulate it only at 5 µM. Furthermore, high Cd supply enhanced the relative proportion of monoterpene hydrocarbons, while Cu increased the proportion of sesquiterpenes, especially at 5 µM. This result provides the first evidence of the response of feverfew plants to Cd or Cu by associating stress-related responses with changes in terpenoids.


Assuntos
Cádmio/metabolismo , Cobre/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/metabolismo , Tanacetum parthenium , Terpenos/metabolismo
14.
Plant Physiol Biochem ; 106: 141-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27161580

RESUMO

Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments.


Assuntos
Aloe/metabolismo , Aloe/efeitos da radiação , Clorofila/metabolismo , Luz , Irrigação Agrícola , Aloe/crescimento & desenvolvimento , Análise de Variância , Antocianinas/metabolismo , Desidratação , Fluorescência , Processos Fotoquímicos/efeitos da radiação
15.
Food Chem ; 138(2-3): 1407-13, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23411261

RESUMO

Dragonhead is an annual, herbaceous, balm-scented and spicy aromatic member of the family Lamiaceae. We examined effects of different sources of nitrogen on the content and composition of essential oils in two genotypes of dragonhead in two regions of Iran. The sources of nitrogen used were 100% urea (70 kg N ha(-1)), 75% urea (52.5 kg N ha(-1))+25% Azocompost (3.85 tonha(-1)), 50% urea (35 kg N ha(-1))+50% Azocompost (7.77 tonha(-1)), 25% urea (17.5 kg N ha(-1))+75% Azocompost (11.55 tonha(-1)), and 100% Azocompost (15.55 tonha(-1)). Optimal yield and content of essential oil at both locations for both genotypes were obtained by applying 50% urea+50% Azocompost. Geraniol, geranial, and geranyl acetate were the most abundant compounds. For both genotypes and both locations, application of 50% urea+50% Azocompost increased levels of geraniol and geranial, and application of Azocompost alone increased levels of geranyl acetate. Overall, we conclude that the application of 50% urea with 50% Azocompost is recommended for optimising the content and composition of essential oils in dragonhead.


Assuntos
Agricultura/métodos , Gleiquênias/química , Lamiaceae/química , Lamiaceae/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos de Plantas/química , Ureia/metabolismo , Genótipo , Irã (Geográfico) , Lamiaceae/genética , Lamiaceae/metabolismo , Solo/análise
16.
World J Microbiol Biotechnol ; 29(7): 1327-39, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23430716

RESUMO

We evaluated response differences of normal and transformed (so-called 'hairy') roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 µM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in 'hairy' roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.


Assuntos
Agrobacterium/genética , Genisteína/metabolismo , Glycine max/fisiologia , Fixação de Nitrogênio , Nodulação , Sais/metabolismo , Transformação Genética , Bradyrhizobium/crescimento & desenvolvimento , Bradyrhizobium/metabolismo , Plantas Geneticamente Modificadas , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Estresse Fisiológico
17.
Environ Sci Pollut Res Int ; 20(3): 1413-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22968674

RESUMO

Cadmium (Cd) toxicity in plants leads to serious disturbances of physiological processes, such as inhibition of chlorophyll synthesis, oxidative injury to the plant cells and water and nutrient uptake. Response of Matricaria chamomilla L. to calcium chloride (CaCl(2)) enrichment in growth medium for reducing Cd toxicity were studied in this study. Hydroponically cultured seedlings were treated with 0, 0.1, 1, and 5 mM CaCl(2), under 0, 120, and 180 µM CdCl(2) conditions, respectively. The study included measurements pertaining to physiological attributes such as growth parameters, Cd concentration and translocation, oxidative stress, and accumulation of phenolics. Addition of CaCl(2) to growth media decreased the Cd concentration, activity of antioxidant enzymes, and reactive oxygen species accumulation in the plants treated with different CdCl(2), but increased the growth parameters. Malondialdehyde and total phenolics in shoots and roots were not much affected when plants were treated only with different CaCl(2) levels, but it showed a rapid increase when the plants were exposed to 120 and 180 CdCl(2) levels. CaCl(2) amendment also ameliorated the CdCl(2)-induced stress by reducing oxidative injury. The beneficial effects of CaCl(2) in ameliorating CdCl(2) toxicity can be attributed to the Ca-induced reduction of Cd concentration, by reducing the cell-surface negativity and competing for Cd(2+) ion influx, activity enhancement of antioxidant enzymes, and biomass accumulation.


Assuntos
Cádmio/toxicidade , Cálcio/farmacologia , Matricaria/efeitos dos fármacos , Antioxidantes/análise , Cloreto de Cádmio/toxicidade , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Matricaria/química , Matricaria/crescimento & desenvolvimento , Matricaria/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Proteínas de Plantas/análise , Espécies Reativas de Oxigênio/análise , Plântula/efeitos dos fármacos
18.
J Plant Physiol ; 168(8): 782-91, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21208683

RESUMO

In this experiment, the possibility of enhancing the water deficit stress tolerance of chamomile (Matricaria chamomilla L.) during two growth stages by the exogenous application of hexaconazole (HEX) was investigated. To improve water deficit tolerance, HEX was applied in three concentrations during two different stages (50 and 80 days after sowing). After HEX applications, the plants were subjected to water deficit stress. Although all HEX concentrations improved the water deficit stress tolerance in chamomile plants, the application of 15 mg L(-1) provided better protection when compared to the other concentration. The exogenous application of HEX provided significant protection against water deficit stress compared to non-HEX-treated plants, significantly affecting the morphological characteristics and aspects of productivity, the relative water, protein and proline contents; non-enzymatic and enzymatic antioxidants; and the flower's apigenin-7-glucoside content. These results suggest that the HEX-induced tolerance to water deficit stress in chamomile was related to the changes in growth variables, antioxidants and the apigenin-7-glucoside content.


Assuntos
Apigenina/metabolismo , Matricaria/efeitos dos fármacos , Matricaria/fisiologia , Triazóis/farmacologia , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidases/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Biomassa , Catalase/efeitos dos fármacos , Catalase/metabolismo , Secas , Peroxidação de Lipídeos/efeitos dos fármacos , Matricaria/metabolismo , Peroxidases/efeitos dos fármacos , Peroxidases/metabolismo , Prolina/metabolismo , Estresse Fisiológico , Fatores de Tempo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...