Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Malar J ; 22(1): 6, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609299

RESUMO

BACKGROUND: In the current context of tailoring interventions to maximize impact, it is important that current data of clinical epidemiology guide public health programmes and health workers in the management of severe disease. This study aimed at describing the burden of severe malaria at hospital level in two areas with distinct malaria transmission intensity. METHODS: A hospital-based surveillance was established in two regional hospitals located in two areas exposed to different malaria transmission. Data on paediatric severe malaria admissions were recorded using standardized methods from August 2017 to August 2018 with an interruption during the dry season from April to June 2018. RESULTS: In total, 921 children with severe malaria cases were enrolled in the study. The mean age was 33.9 (± 1.3) and 36.8 (± 1.6) months in lower malaria transmission (LMT) and higher malaria transmission (HMT) areas (p = 0.15), respectively. The geometric mean of asexual P. falciparum density was significantly higher in the LMT area compared to the HMT area: 22,861 trophozoites/µL (95% CI 17,009.2-30,726.8) vs 11,291.9 trophozoites/µL (95% CI 8577.9-14,864.5). Among enrolled cases, coma was present in 70 (9.2%) participants. 196 patients (21.8%) presented with two or more convulsions episodes prior to admission. Severe anaemia was present in 448 children (49.2%). Other clinical features recorded included 184 (19.9%) cases of lethargy, 99 (10.7%) children with incoercible vomiting, 80 (8.9%) patients with haemoglobinuria, 43 (4.8%) children with severe hypoglycaemia, 37 (4.0%) cases where child was unable to drink/suck, 11 (1.2%) cases of patients with circulatory collapse/shock, and 8 cases (0.9%) of abnormal bleeding (epistaxis). The adjusted odds of presenting with coma, respiratory distress, haemoglobinuria, circulatory collapse/shock and hypoglycaemia were significantly higher (respectively 6.5 (95%CI 3.4-12.1); 1.8 (95%CI 1.0-3.2); 2.7 (95%CI 1.6-4.3); 5.9 (95%CI 1.3-27.9); 1.9 (95%CI 1.0-3.6)) in children living in the HMT area compared to those residing in the LMT area. Overall, forty-four children died during hospitalization (case fatality rate 5.0%) with the highest fatalities in children admitted with respiratory distress (26.0%) and those with hypoglycaemia (25.0%). CONCLUSION: The study showed that children in the HMT area have a higher risk of presenting with coma, shock/dehydration, haemoglobinuria, hypoglycaemia, and respiratory distress. Case-fatality rate is higher among patients with respiratory distress or hypoglycaemia. Hospital surveillance provides a reliable and sustainable means to monitor the clinical presentation of severe malaria and tailor the training needs and resources allocation for case management.


Assuntos
Hipoglicemia , Malária Falciparum , Malária , Síndrome do Desconforto Respiratório , Criança , Humanos , Lactente , Adulto , Burkina Faso/epidemiologia , Coma , Hemoglobinúria , Malária/epidemiologia , Hospitais , Malária Falciparum/epidemiologia
2.
Commun Biol ; 4(1): 1375, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880413

RESUMO

Cholesterol-rich microdomains are membrane compartments characterized by specific lipid and protein composition. These dynamic assemblies are involved in several biological processes, including infection by intracellular pathogens. This work provides a comprehensive analysis of the composition of human erythrocyte membrane microdomains. Based on their floating properties, we also categorized the microdomain-associated proteins into clusters. Interestingly, erythrocyte microdomains include the vast majority of the proteins known to be involved in invasion by the malaria parasite Plasmodium falciparum. We show here that the Ecto-ADP-ribosyltransferase 4 (ART4) and Aquaporin 1 (AQP1), found within one specific cluster, containing the essential host determinant CD55, are recruited to the site of parasite entry and then internalized to the newly formed parasitophorous vacuole membrane. By generating null erythroid cell lines, we showed that one of these proteins, ART4, plays a role in P. falciparum invasion. We also found that genetic variants in both ART4 and AQP1 are associated with susceptibility to the disease in a malaria-endemic population.


Assuntos
Membrana Eritrocítica/química , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Malária/parasitologia , Microdomínios da Membrana/química , Membrana Eritrocítica/parasitologia , Eritrócitos/química , Humanos , Plasmodium falciparum/fisiologia
3.
Int J Infect Dis ; 107: 234-241, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940188

RESUMO

BACKGROUND: Recent studies showed the first emergence of the R561H artemisinin-associated resistance marker in Africa, which highlights the importance of continued molecular surveillance to assess the selection and spread of this and other drug resistance markers in the region. METHOD: In this study, we used targeted amplicon deep sequencing of 116 isolates collected in two areas of Cameroon to genotype the major drug resistance genes, k13, crt, mdr1, dhfr, and dhps, and the cytochrome b gene (cytb) in Plasmodium falciparum. RESULTS: No confirmed or associated artemisinin resistance markers were observed in Pfk13. In comparison, both major and minor alleles associated with drug resistance were found in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps. Notably, a high frequency of other nonsynonymous mutations was observed across all the genes, except for Pfcytb, suggesting continued selection pressure. CONCLUSIONS: The results from this study supported the continued use of artemisinin-based combination therapy and administration of sulfadoxine-pyrimethamine for intermittent preventive therapy in pregnant women, and for seasonal chemoprevention in these study sites in Cameroon.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Marcadores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Alelos , Camarões , Feminino , Genótipo , Humanos , Mutação , Plasmodium falciparum/isolamento & purificação , Gravidez
4.
Acta Trop ; 205: 105381, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32007449

RESUMO

Infection with helminths in sub-Saharan Africa could modulate the immune response towards Plasmodium falciparum as well as susceptibility to malaria infection and disease. The aim of this study is to assess the antibody responses to helminths species in malaria-exposed populations from Burkina Faso. Plasma samples were collected in rural villages inhabited by Fulani, Mossi and Rimaibe communities, and IgG against parasitic helminths were measured by ELISA. The prevalence of IgG against antigens of Strongyloides stercoralis, Wuchereria bancrofti and Schistosoma haematobium (Soluble Egg Antigen, SEA) was 5%, 16% and 63% respectively, in line with estimates of infection prevalence in the region for the three parasites. Anti-SEA IgG prevalence was highest at 10-20 years of age, higher in males than females, and did not show differences between ethnic groups. However, the Fulani showed lower levels of anti-SEA IgG suggesting that lighter S. haematobium infections may occur in the ethnic group known for a marked lower susceptibility to P. falciparum. The present data support the use of serological methods for integrated surveillance of neglected tropical diseases such as soil-transmitted helminths, lymphatic filariasis and bilharzia. Furthermore, as helminth infections might promote downregulation of immune responses against intracellular pathogens, the observation of lower anti-SEA IgG levels in the malaria resistant Fulani population warrants further investigation into the immunological cross-talk between S. haematobium and P. falciparum in this geographical region.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Malária Falciparum/imunologia , Schistosoma haematobium/imunologia , Adolescente , Adulto , Animais , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Malar J ; 16(1): 468, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149898

RESUMO

BACKGROUND: The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites. AIM AND OBJECTIVES: The aim of this work was to develop sensitive and cheap Real Time qPCR assays for large-scale epidemiological surveys, based on detection and amplification of gametocyte sex specific transcripts selected from the literature: the female-specific pfs25 and pf glycerol kinase (pfGK) and the male-specific pfs230p and pf13 transcripts. METHODS: RTqPCR assays were used to test the gametocyte- and sex-specific expression of the target genes using asexual stages of the gametocyteless parasite clone F12 and FACS purified male and female gametocytes of the PfDynGFP/P47mCherry line. Assays were performed on 50 blood samples collected during an epidemiological survey in the Soumousso village, Burkina Faso, West-Africa, and amplification of the human housekeeping gene 18S rRNA was employed to normalize RNA sample variability. RESULTS: SYBR Green assays were developed that showed higher sensitivity compared to Taqman assays at a reduced cost. RTqPCR results confirmed that expression of pfs25 and pfs230p are female and male-specific, respectively, and introduced two novel markers, the female-specific pfGK and the male-specific pf13. A formula was derived to calculate the ratio of male to female gametocytes based on the ratio of male to female transcript copy number. Use of these assays in the field samples showed, as expected, a higher sensitivity of RTqPCR compared to microscopy. Importantly, similar values of gametocyte sex-ratio were obtained in the field samples based on the four different target combinations. CONCLUSION: Novel, sensitive, cheap and robust molecular assays were developed for the detection and quantification of female and male P. falciparum gametocytes. In particular, the RTqPCR assays based on the female-specific pfs25 and the newly described male gametocyte-specific pf13 transcripts, including normalization by the human 18S, reliably assess presence and abundance of female and male gametocytes and enable to determine their sex-ratio in human subjects in endemic areas.


Assuntos
Microscopia/métodos , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Burkina Faso , Humanos , Dinâmica Populacional
6.
Science ; 356(6343)2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28522690

RESUMO

The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.


Assuntos
Resistência à Doença/genética , Eritrócitos/parasitologia , Glicoforinas , Interações Hospedeiro-Parasita/genética , Malária Falciparum/genética , Modelos Moleculares , Adulto , África Subsaariana , Criança , Variações do Número de Cópias de DNA/genética , Frequência do Gene , Genoma Humano/genética , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
7.
Elife ; 62017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067620

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effecthas proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual's level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations.


Assuntos
Anemia/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/complicações , Malária Cerebral/epidemiologia , Malária Falciparum/epidemiologia , Alelos , Anemia/patologia , Estudos de Casos e Controles , Glucosefosfato Desidrogenase/genética , Humanos , Malária Cerebral/patologia , Malária Falciparum/patologia , Medição de Risco
8.
Mol Genet Genomic Med ; 4(5): 548-56, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27652282

RESUMO

BACKGROUND: Transthyretin (TTR) pV142I (rs76992529-A) is one of the 113 variants in the human TTR gene associated with systemic amyloidosis. It results from a G to A transition at a CG dinucleotide in the codon for amino acid 122 of the mature protein (TTR V122I). The allele frequency is 0.0173 in African Americans. METHODS: PCR-based assays to genotype 2767 DNA samples obtained from participants in genetic studies from various African populations supplemented with sequencing data from 529 samples within the 1000 Genomes Project. RESULTS: The rs76992529-A variant allele was most prevalent (allele frequency 0.0253) in the contiguous West African countries of Sierra Leone, Guinea, Ivory Coast, Burkina Faso, Ghana, and Nigeria. In other African countries, the mean allele frequency was 0.011. CONCLUSIONS: Our data are consistent with a small number of founder carriers of the amyloidogenic TTR V122I (p.Val142Ile) allele in southern West Africa, with no apparent advantage or disadvantage of an allele carrying newborn reaching adulthood. In U.S. African Americans, the allele represents a significant risk for congestive heart failure late in life. If clinical penetrance is similar in African countries with high allele frequencies, then cardiac amyloidosis could also represent a significant cause of heart disease in the elderly in those populations.

9.
PLoS One ; 10(12): e0144555, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658699

RESUMO

Pyruvate kinase (PKLR) is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival) of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q) was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41) is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q) affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.


Assuntos
Malária Falciparum/genética , Malária Vivax/genética , Malária/genética , Parasitemia/genética , Fenótipo , Piruvato Quinase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Suscetibilidade a Doenças , Eritrócitos/enzimologia , Eritrócitos/parasitologia , Expressão Gênica , Genótipo , Humanos , Malária/enzimologia , Malária/patologia , Malária Falciparum/enzimologia , Malária Falciparum/epidemiologia , Malária Falciparum/patologia , Malária Vivax/enzimologia , Malária Vivax/epidemiologia , Malária Vivax/patologia , Camundongos , Camundongos Knockout , Parasitemia/enzimologia , Parasitemia/epidemiologia , Parasitemia/patologia , Plasmodium chabaudi/fisiologia , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Polimorfismo de Nucleotídeo Único , Estabilidade Proteica , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Senegal/epidemiologia , Alinhamento de Sequência , Índice de Gravidade de Doença , Tailândia/epidemiologia
10.
Malar J ; 14: 333, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314886

RESUMO

BACKGROUND: Many studies report associations between human genetic factors and immunity to malaria but few have been reliably replicated. These studies are usually country-specific, use small sample sizes and are not directly comparable due to differences in methodologies. This study brings together samples and data collected from multiple sites across Africa and Asia to use standardized methods to look for consistent genetic effects on anti-malarial antibody levels. METHODS: Sera, DNA samples and clinical data were collected from 13,299 individuals from ten sites in Senegal, Mali, Burkina Faso, Sudan, Kenya, Tanzania, and Sri Lanka using standardized methods. DNA was extracted and typed for 202 Single Nucleotide Polymorphisms with known associations to malaria or antibody production, and antibody levels to four clinical grade malarial antigens [AMA1, MSP1, MSP2, and (NANP)4] plus total IgE were measured by ELISA techniques. Regression models were used to investigate the associations of clinical and genetic factors with antibody levels. RESULTS: Malaria infection increased levels of antibodies to malaria antigens and, as expected, stable predictors of anti-malarial antibody levels included age, seasonality, location, and ethnicity. Correlations between antibodies to blood-stage antigens AMA1, MSP1 and MSP2 were higher between themselves than with antibodies to the (NANP)4 epitope of the pre-erythrocytic circumsporozoite protein, while there was little or no correlation with total IgE levels. Individuals with sickle cell trait had significantly lower antibody levels to all blood-stage antigens, and recessive homozygotes for CD36 (rs321198) had significantly lower anti-malarial antibody levels to MSP2. CONCLUSION: Although the most significant finding with a consistent effect across sites was for sickle cell trait, its effect is likely to be via reducing a microscopically positive parasitaemia rather than directly on antibody levels. However, this study does demonstrate a framework for the feasibility of combining data from sites with heterogeneous malaria transmission levels across Africa and Asia with which to explore genetic effects on anti-malarial immunity.


Assuntos
Anticorpos Antiprotozoários/imunologia , Malária/epidemiologia , Malária/genética , Malária/imunologia , Adolescente , Adulto , África Subsaariana/epidemiologia , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Feminino , Hemoglobina Falciforme/genética , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Masculino , Sri Lanka/epidemiologia , Adulto Jovem
11.
J Infect Dis ; 212(4): 626-34, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25712976

RESUMO

Although hemoglobin S (HbS) and hemoglobin C (HbC) are well known to protect against severe Plasmodium falciparum malaria, conclusive evidence on their role against infection has not yet been obtained. Here we show, in 2 populations from Burkina Faso (2007-2008), that HbS is associated with a 70% reduction of harboring P. falciparum parasitemia at the heterozygous state (odds ratio [OR] for AS vs AA, 0.27; 95% confidence interval [CI], .11-.66; P = .004). There is no evidence of protection for HbC in the heterozygous state (OR for AC vs AA, 1.49; 95% CI, .69-3.21; P = .31), whereas protection even higher than that observed with AS is observed in the homozygous and double heterozygous states (OR for CC + SC vs AA, 0.04; 95% CI, .01-.29; P = .002). The abnormal display of parasite-adhesive molecules on the surface of HbS and HbC infected erythrocytes, disrupting the pathogenic process of sequestration, might displace the parasite from the deep to the peripheral circulation, promoting its elimination at the spleen level.


Assuntos
Hemoglobina C , Hemoglobina Falciforme , Malária Falciparum/sangue , Parasitemia , Plasmodium falciparum , Adolescente , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Malária Falciparum/epidemiologia , Masculino , Razão de Chances , Fatores de Risco , Traço Falciforme/sangue , Traço Falciforme/epidemiologia , Traço Falciforme/genética , Adulto Jovem
12.
Acta Trop ; 142: 41-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447268

RESUMO

In the present study, the influences of FcγRIIA polymorphism on susceptibility to malaria and antibody responses to Plasmodium falciparum antigens were analyzed in children. We recruited 96 healthy children between 3 and 10 years at the beginning of the high transmission season and we followed up for 5 months through the high transmission season to assess the parasitological, immunological and genetic endpoints in relation to clinical malaria status. There was a similar distribution of homozygous and heterozygous individuals carrying the FcγRIIA-131R/R and FcγRIIA-131R/H allele, whereas the number of FcγRIIA-131H/H homozygous individuals was lower. P. falciparum infection frequency was not associated with the FcγRIIa-131R/H polymorphism. Only IgG antibody responses to GLURP R0 showed a significant association between antibody levels and FcγRIIA polymorphism (p=0.02). IgG levels to MSP2a were significantly higher in children who did not experience any clinical malaria episode compared to those who experienced at least one malaria episode (p=0.019). Cytophilic and non-cytophylic IgG subclass levels were higher in children without malaria than those who experienced at least one malaria episode. This difference was statistically significant for IgG1 to MSP3 (p=0.003) and to MSP2a (p=0.006); IgG3 to MSP2a (p=0.007) and to GLURP R0 (p=0.044); IgG2 to MSP2b (p=0.007) and IgG4 to MSP3 (p=0.051) and to MSP2a (p=0.049). In this study, homozygous carriers of the FcγRIIA-131R/R allele had higher malaria-specific antibody levels compare to the heterozygous carriers FcγRIIA-131R/H alleles and to homozygous carriers of FcγRIIA-131H/H alleles. The pre-existing antibodies responses were related to a reduced subsequent risk of clinical malaria.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Falciparum/genética , Plasmodium falciparum/imunologia , Polimorfismo Genético , Receptores de IgG/genética , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Suscetibilidade a Doenças , Feminino , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Masculino
13.
Parasit Vectors ; 7: 549, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25428638

RESUMO

BACKGROUND: Mosquito saliva plays crucial roles in blood feeding but also evokes in hosts an anti-saliva antibody response. The IgG response to the Anopheles gambiae salivary protein gSG6 was previously shown to be a reliable indicator of human exposure to Afrotropical malaria vectors. We analyzed here the humoral response to the salivary anti-thrombin cE5 in a group of individuals from a malaria hyperendemic area of Burkina Faso. METHODS: ELISA was used to measure the anti-cE5 IgG, IgG1 and IgG4 antibody levels in plasma samples collected in the village of Barkoumbilen (Burkina Faso) among individuals of the Rimaibé ethnic group. Anti-gSG6 IgG levels were also determined for comparison. Anopheles vector density in the study area was evaluated by indoor pyrethrum spray catches. RESULTS: The cE5 protein was highly immunogenic and triggered in exposed individuals a relatively long-lasting antibody response, as shown by its unchanged persistence after a few months of absent or very low exposure (dry season). In addition cE5 did not induce immune tolerance, as previously suggested for the gSG6 antigen. Finally, IgG subclass analysis suggested that exposed individuals may mount a Th1-type immune response against the cE5 protein. CONCLUSIONS: The anti-cE5 IgG response is shown here to be a sensitive indicator of human exposure to anopheline vectors and to represent an additional tool for malaria epidemiological studies. It may be especially useful in conditions of low vector density, to monitor transiently exposed individuals (i.e. travellers/workers/soldiers spending a few months in tropical Africa) and to evaluate the impact of insecticide treated nets on vector control. Moreover, the gSG6 and cE5 salivary proteins were shown to trigger in exposed individuals a strikingly different immune response with (i) gSG6 evoking a short-lived IgG response, characterized by high IgG4 levels and most likely induction of immune tolerance, and (ii) cE5 eliciting a longer-living IgG response, dominated by anti-cE5 IgG1 antibodies and not inducing tolerance mechanisms. We believe that these two antigens may represent useful reagents to further investigate the so far overlooked role of Anopheles saliva and salivary proteins in host early immune response to Plasmodium parasites.


Assuntos
Anopheles/metabolismo , Imunoglobulina G/sangue , Proteínas de Insetos/imunologia , Insetos Vetores/fisiologia , Malária/transmissão , Proteínas e Peptídeos Salivares/metabolismo , Distribuição Animal , Animais , Anopheles/genética , Chile , Colômbia , Humanos , Insetos Vetores/imunologia , Projetos Piloto , Proteínas e Peptídeos Salivares/genética , Estados Unidos
14.
Curr Opin Immunol ; 30: 39-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24996199

RESUMO

Infection with malaria parasites has imposed a strong selective pressure on the human genome, promoting the convergent evolution of a diverse range of genetic adaptations, many of which are harboured by the red blood cell, which hosts the pathogenic stage of the Plasmodium life cycle. Recent genome-wide and multi-centre association studies of severe malaria have consistently identified ATP2B4, encoding the major Ca(2+) pump of erythrocytes, as a novel resistance locus. Evidence is also accumulating that interaction occurs among resistance loci, the most recent example being negative epistasis among alpha-thalassemia and haptoglobin type 2. Finally, studies on the effect of haemoglobin S and C on parasite transmission to mosquitoes have suggested that protective variants could increase in frequency enhancing parasite fitness.


Assuntos
Evolução Molecular , Genoma Humano , Malária/genética , Adaptação Fisiológica , Alelos , Animais , Humanos , Malária/epidemiologia , Malária/parasitologia , Plasmodium
15.
PLoS One ; 9(4): e96130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24760038

RESUMO

Human antibody response to the Anopheles gambiae salivary protein gSG6 has recently emerged as a potentially useful tool for malaria epidemiological studies and for the evaluation of vector control interventions. However, the current understanding of the host immune response to mosquito salivary proteins and of the possible crosstalk with early response to Plasmodium parasites is still very limited. We report here the analysis of IgG1 and IgG4 subclasses among anti-gSG6 IgG responders belonging to Mossi and Fulani from Burkina Faso, two ethnic groups which are known for their differential humoral response to parasite antigens and for their different susceptibility to malaria. The IgG1 antibody response against the gSG6 protein was comparable in the two groups. On the contrary, IgG4 titers were significantly higher in the Fulani where, in addition, anti-gSG6 IgG4 antibodies appeared in younger children and the ratio IgG4/IgG1 stayed relatively stable throughout adulthood. Both gSG6-specific IgG1 and IgG4 antibodies showed a tendency to decrease with age whereas, as expected, the IgG response to the Plasmodium circumsporozoite protein (CSP) exhibited an opposite trend in the same individuals. These observations are in line with the idea that the An. gambiae gSG6 salivary protein induces immune tolerance, especially after intense and prolonged exposure as is the case for the area under study, suggesting that gSG6 may trigger in exposed individuals a Th2-oriented immune response.


Assuntos
Anopheles/imunologia , População Negra/etnologia , Imunoglobulina G/sangue , Proteínas de Insetos/imunologia , Malária Falciparum/imunologia , Proteínas e Peptídeos Salivares/imunologia , Adolescente , Adulto , Animais , Burkina Faso/etnologia , Criança , Humanos , Tolerância Imunológica , Malária Falciparum/etnologia , Proteínas de Protozoários/imunologia , Adulto Jovem
16.
PLoS One ; 7(6): e40170, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768250

RESUMO

Assessment of exposure to malaria vectors is important to our understanding of spatial and temporal variations in disease transmission and facilitates the targeting and evaluation of control efforts. Recently, an immunogenic Anopheles gambiae salivary protein (gSG6) was identified and proposed as the basis of an immuno-assay determining exposure to Afrotropical malaria vectors. In the present study, IgG responses to gSG6 and 6 malaria antigens (CSP, AMA-1, MSP-1, MSP-3, GLURP R1, and GLURP R2) were compared to Anopheles exposure and malaria incidence in a cohort of children from Korogwe district, Tanzania, an area of moderate and heterogeneous malaria transmission. Anti-gSG6 responses above the threshold for seropositivity were detected in 15% (96/636) of the children, and were positively associated with geographical variations in Anopheles exposure (OR 1.25, CI 1.01-1.54, p = 0.04). Additionally, IgG responses to gSG6 in individual children showed a strong positive association with household level mosquito exposure. IgG levels for all antigens except AMA-1 were associated with the frequency of malaria episodes following sampling. gSG6 seropositivity was strongly positively associated with subsequent malaria incidence (test for trend p = 0.004), comparable to malaria antigens MSP-1 and GLURP R2. Our results show that the gSG6 assay is sensitive to micro-epidemiological variations in exposure to Anopheles mosquitoes, and provides a correlate of malaria risk that is unrelated to immune protection. While the technique requires further evaluation in a range of malaria endemic settings, our findings suggest that the gSG6 assay may have a role in the evaluation and planning of targeted and preventative anti-malaria interventions.


Assuntos
Anopheles/imunologia , Vetores de Doenças , Imunoglobulina G/imunologia , Proteínas de Insetos/imunologia , Malária/imunologia , Malária/transmissão , Proteínas e Peptídeos Salivares/imunologia , Animais , Características da Família , Feminino , Humanos , Incidência , Lactente , Malária/epidemiologia , Malária/parasitologia , Plasmodium falciparum/imunologia , Fatores de Risco , Estudos Soroepidemiológicos , Tanzânia/epidemiologia
17.
Nature ; 487(7407): 375-9, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22722859

RESUMO

Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.


Assuntos
Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Alelos , Genoma de Protozoário , Genótipo , Humanos , Filogenia , Plasmodium falciparum/classificação , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
18.
Malar J ; 11: 125, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22531455

RESUMO

BACKGROUND: The aim of this study was to investigate cytochrome P450 2C8*2 (CYP2C8*2) distribution and allele frequency in three populations from West and East Africa exposed to Plasmodium falciparum malaria. CYP2C8 enzyme is involved in the metabolism of the anti-malarials amodiaquine and chloroquine. The presence of the CYP2C8*2 defective allele has been recently associated to higher rate of chloroquine-resistant malaria parasites. METHODS: A total of 503 young subjects were genotyped for the single nucleotide polymorphism rs11572103 (A/T). Eighty-eight were from southern Senegal, 262 from eastern Uganda and 153 from southern Madagascar. The PCR-RFLP technique was used to discriminate the wild-type (A) from the defective allele (T). RESULTS: A CYP2C8*2 (T) allele frequency of 0.222 ± 0.044 was detected in Senegal, 0.105 ± 0.019 in Uganda and 0.150 ± 0.029 in Madagascar. CONCLUSIONS: This study demonstrated that CYP2C8*2 allele is widespread in Africa. This allele occurs at different frequency in West and East Africa, being higher in Senegal than in Uganda and Madagascar. These data indicate that an important fraction of the populations analysed has a decreased enzymatic activity, thus being at higher risk for drug accumulation with two possible consequences: i) an exacerbation of drug-associated adverse side effects; ii) an increase of drug-resistance selection pressure on P. falciparum parasites.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Frequência do Gene , Polimorfismo Genético , Adolescente , Amodiaquina/metabolismo , Antimaláricos/metabolismo , Criança , Pré-Escolar , Cloroquina/metabolismo , Estudos Transversais , Citocromo P-450 CYP2C8 , Feminino , Genótipo , Humanos , Madagáscar , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Senegal , Uganda
19.
BMC Res Notes ; 5: 76, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22283984

RESUMO

BACKGROUND: Fulani ethnic group individuals are less susceptible than sympatric Mossi ethnic group, in term of malaria infection severity, and differ in antibody production against malaria antigens. The differences in susceptibility to malaria between Fulani and Mossi ethnic groups are thought to be regulated by different genetic backgrounds and offer the opportunity to compare haematological parameters, Tregs and γδT cell profiles in seasonal and stable malaria transmission settings in Burkina Faso. The study was conducted at two different time points i.e. during the high and low malaria transmission period. RESULTS: Two cross-sectional surveys were undertaken in adults above 20 years belonging either to the Fulani or the Mossi ethnic groups 1) at the peak of the malaria transmission season and 2) during the middle of the low malaria transmission season. Full blood counts, proportions of Tregs and γδ T cells were measured at both time-points.As previously shown the Fulani and Mossi ethnic groups showed a consistent difference in P. falciparum infection rates and parasite load. Differential white blood cell counts showed that the absolute lymphocyte counts were higher in the Mossi than in the Fulani ethnic group at both time points. While the proportion of CD4+CD25high was higher in the Fulani ethnic group at the peak of malaria transmission season (p = 0.03), no clear pattern emerged for T regulatory cells expressing FoxP3+ and CD127low. However CD3+γδ+ subpopulations were found to be higher in the Fulani compared to the Mossi ethnic group, and this difference was statistically significant at both time-points (p = 0.004 at low transmission season and p = 0.04 at peak of transmission). CONCLUSION: Our findings on regulatory T cell phenotypes suggest an interesting role for immune regulatory mechanisms in response to malaria. The study also suggests that TCRγδ + cells might contribute to the protection against malaria in the Fulani ethnic group involving their reported parasite inhibitory activities.

20.
J Infect Dis ; 204(11): 1772-8, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21998472

RESUMO

One approach to investigate if human genetic variation influences the selection of Plasmodium falciparum drug resistance is to compare the frequency of resistant infections among human populations differing in their genetic background and living in the same epidemiological context. A further complementary approach consists in comparing drug resistance among subjects differing for genes involved in drug metabolism. Here we report, from malariological surveys performed in Burkina Faso, that the prevalence of P. falciparum chloroquine-resistant infections (pfcrt 76T and/or pfmdr1 86Y alleles) differs among sympatric ethnic groups, being higher in the Mossi and Rimaibé groups than in the Fulani group (odds ratio [OR], 2.24; 95% confidence interval [CI], 1.27-3.92; P = .007). The association analysis revealed that the human CYP2C8*2 variant, known to determine a poor drug metabolizer phenotype, was associated with P. falciparum chloroquine-resistant infections (OR, 1.66; 95% CI, 1.13-2.43; P = .008). This variant is more frequent in the Mossi-Rimaibé group (23.7% ± 1.4%) than in the Fulani group (9.9% ± 2.5%; P = .0003). This study provides an example of how host genetic variation may influence the selection dynamics of a pathogen's drug resistance.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , População Negra/genética , Resistência a Medicamentos/genética , Malária Falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Alelos , Antimaláricos/farmacologia , Burkina Faso/epidemiologia , Criança , Cloroquina/farmacologia , Estudos Transversais , Citocromo P-450 CYP2C8 , Variação Genética , Genótipo , Humanos , Malária Falciparum/etnologia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Prevalência , Proteínas de Protozoários/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...