Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Discov ; 8(1): 102, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202798

RESUMO

Targeted cancer therapies have revolutionized treatment but their efficacies are limited by the development of resistance driven by clonal evolution within tumors. We developed "CAPTURE", a single-cell barcoding approach to comprehensively trace clonal dynamics and capture live lineage-coupled resistant cells for in-depth multi-omics analysis and functional exploration. We demonstrate that heterogeneous clones, either preexisting or emerging from drug-tolerant persister cells, dominated resistance to vemurafenib in BRAFV600E melanoma. Further integrative studies uncovered diverse resistance mechanisms. This includes a previously unrecognized and clinically relevant mechanism, chromosome 18q21 gain, which leads to vulnerability of the cells to BCL2 inhibitor. We also identified targetable common dependencies of captured resistant clones, such as oxidative phosphorylation and E2F pathways. Our study provides new therapeutic insights into overcoming therapy resistance in BRAFV600E melanoma and presents a platform for exploring clonal evolution dynamics and vulnerabilities that can be applied to study treatment resistance in other cancers.

2.
Front Oncol ; 12: 941657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059614

RESUMO

Treatment-resistant glioma stem cells are thought to propagate and drive growth of malignant gliomas, but their markers and our ability to target them specifically are not well understood. We demonstrate that podoplanin (PDPN) expression is an independent prognostic marker in gliomas across multiple independent patient cohorts comprising both high- and low-grade gliomas. Knockdown of PDPN radiosensitized glioma cell lines and glioma-stem-like cells (GSCs). Clonogenic assays and xenograft experiments revealed that PDPN expression was associated with radiotherapy resistance and tumor aggressiveness. We further demonstrate that knockdown of PDPN in GSCs in vivo is sufficient to improve overall survival in an intracranial xenograft mouse model. PDPN therefore identifies a subset of aggressive, treatment-resistant glioma cells responsible for radiation resistance and may serve as a novel therapeutic target.

3.
Pract Radiat Oncol ; 12(6): e476-e480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598860

RESUMO

We present the case of a 56-year-old female with a diagnosis of acute T-cell lymphoblastic leukemia who received myeloablative conditioning for bone marrow transplant with total body irradiation (TBI) using volumetric modulated arc therapy (VMAT) to the upper body and anterior-posterior/posterior-anterior (AP/PA) open fields to the lower body followed by hematopoietic stem cell transplant. Her clinical course was complicated by high-grade pulmonary toxic effects 55 days after treatment that resulted in death. We discuss the case, planning considerations by radiation oncologists and radiation physicists, and the multidisciplinary medical management of this patient.


Assuntos
Radioterapia de Intensidade Modulada , Irradiação Corporal Total , Humanos , Feminino , Pessoa de Meia-Idade , Irradiação Corporal Total/efeitos adversos , Irradiação Corporal Total/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Condicionamento Pré-Transplante/efeitos adversos , Condicionamento Pré-Transplante/métodos , Vidarabina/efeitos adversos , Estudos Retrospectivos
5.
Acad Med ; 96(4): 518-521, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464738

RESUMO

PROBLEM: Physician-scientists are individuals trained in both clinical practice and scientific research. Often, the goal of physician-scientist training is to address pressing questions in biomedical research. The established pathways to formally train such individuals are mainly MD-PhD programs and physician-scientist track residencies. Although graduates of these pathways are well equipped to be physician-scientists, numerous factors, including funding and length of training, discourage application to such programs and impede success rates. APPROACH: To address some of the pressing challenges in training and retaining burgeoning physician-scientists, New York University Grossman School of Medicine formed the Accelerated MD-PhD-Residency Pathway in 2016. This pathway builds on the previously established accelerated 3-year MD pathway to residency at the same institution. The Accelerated MD-PhD-Residency Pathway conditionally accepts MD-PhD trainees to a residency position at the same institution through the National Resident Matching Program. OUTCOMES: Since its inception, 2 students have joined the Accelerated MD-PhD-Residency Pathway, which provides protected research time in their chosen residency. The pathway reduces the time to earn an MD and PhD by 1 year and reduces the MD training phase to 3 years, reducing the cost and lowering socioeconomic barriers. Remaining at the same institution for residency allows for the growth of strong research collaborations and mentoring opportunities, which foster success. NEXT STEPS: The authors and institutional leaders plan to increase the number of trainees who are accepted into the Accelerated MD-PhD-Residency Pathway and track the success of these students through residency and into practice to determine if the pathway is meeting its goal of increasing the number of practicing physician-scientists. The authors hope this model can serve as an example to leaders at other institutions who may wish to adopt this pathway for the training of their MD-PhD students.


Assuntos
Pesquisa Biomédica/educação , Pesquisa Biomédica/tendências , Educação de Pós-Graduação em Medicina/normas , Educação de Pós-Graduação em Medicina/tendências , Guias como Assunto , Internato e Residência/normas , Internato e Residência/tendências , Adulto , Pesquisa Biomédica/estatística & dados numéricos , Educação de Pós-Graduação em Medicina/estatística & dados numéricos , Feminino , Previsões , Humanos , Internato e Residência/estatística & dados numéricos , Masculino , New York , Adulto Jovem
6.
BMC Med Inform Decis Mak ; 20(1): 13, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992301

RESUMO

BACKGROUND: The emergency department is a critical juncture in the trajectory of care of patients with serious, life-limiting illness. Implementation of a clinical decision support (CDS) tool automates identification of older adults who may benefit from palliative care instead of relying upon providers to identify such patients, thus improving quality of care by assisting providers with adhering to guidelines. The Primary Palliative Care for Emergency Medicine (PRIM-ER) study aims to optimize the use of the electronic health record by creating a CDS tool to identify high risk patients most likely to benefit from primary palliative care and provide point-of-care clinical recommendations. METHODS: A clinical decision support tool entitled Emergency Department Supportive Care Clinical Decision Support (Support-ED) was developed as part of an institutionally-sponsored value based medicine initiative at the Ronald O. Perelman Department of Emergency Medicine at NYU Langone Health. A multidisciplinary approach was used to develop Support-ED including: a scoping review of ED palliative care screening tools; launch of a workgroup to identify patient screening criteria and appropriate referral services; initial design and usability testing via the standard System Usability Scale questionnaire, education of the ED workforce on the Support-ED background, purpose and use, and; creation of a dashboard for monitoring and feedback. RESULTS: The scoping review identified the Palliative Care and Rapid Emergency Screening (P-CaRES) survey as a validated instrument in which to adapt and apply for the creation of the CDS tool. The multidisciplinary workshops identified two primary objectives of the CDS: to identify patients with indicators of serious life limiting illness, and to assist with referrals to services such as palliative care or social work. Additionally, the iterative design process yielded three specific patient scenarios that trigger a clinical alert to fire, including: 1) when an advance care planning document was present, 2) when a patient had a previous disposition to hospice, and 3) when historical and/or current clinical data points identify a serious life-limiting illness without an advance care planning document present. Monitoring and feedback indicated a need for several modifications to improve CDS functionality. CONCLUSIONS: CDS can be an effective tool in the implementation of primary palliative care quality improvement best practices. Health systems should thoughtfully consider tailoring their CDSs in order to adapt to their unique workflows and environments. The findings of this research can assist health systems in effectively integrating a primary palliative care CDS system seamlessly into their processes of care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03424109. Registered 6 February 2018, Grant Number: AT009844-01.


Assuntos
Sistemas de Apoio a Decisões Clínicas/instrumentação , Medicina de Emergência/organização & administração , Cuidados Paliativos , Encaminhamento e Consulta , Design de Software , Fluxo de Trabalho , Serviço Hospitalar de Emergência/organização & administração , Humanos , New York , Qualidade da Assistência à Saúde
7.
Front Oncol ; 9: 417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165048

RESUMO

The identification of heterozygous neomorphic isocitrate dehydrogenase (IDH) mutations across multiple cancer types including both solid and hematologic malignancies has revolutionized our understanding of oncogenesis in these malignancies and the potential for targeted therapeutics using small molecule inhibitors. The neomorphic mutation in IDH generates an oncometabolite product, 2-hydroxyglutarate (2HG), which has been linked to the disruption of metabolic and epigenetic mechanisms responsible for cellular differentiation and is likely an early and critical contributor to oncogenesis. In the past 2 years, two mutant IDH (mutIDH) inhibitors, Enasidenib (AG-221), and Ivosidenib (AG-120), have been FDA-approved for IDH-mutant relapsed or refractory acute myeloid leukemia (AML) based on phase 1 safety and efficacy data and continue to be studied in trials in hematologic malignancies, as well as in glioma, cholangiocarcinoma, and chondrosarcoma. In this review, we will summarize the molecular pathways and oncogenic consequences associated with mutIDH with a particular emphasis on glioma and AML, and systematically review the development and preclinical testing of mutIDH inhibitors. Existing clinical data in both hematologic and solid tumors will likewise be reviewed followed by a discussion on the potential limitations of mutIDH inhibitor monotherapy and potential routes for treatment optimization using combination therapy.

8.
Sci Adv ; 4(10): eaau5935, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30402543

RESUMO

A methionine substitution at lysine-27 on histone H3 variants (H3K27M) characterizes ~80% of diffuse intrinsic pontine gliomas (DIPG) and inhibits polycomb repressive complex 2 (PRC2) in a dominant-negative fashion. Yet, the mechanisms for this inhibition and abnormal epigenomic landscape have not been resolved. Using quantitative proteomics, we discovered that robust PRC2 inhibition requires levels of H3K27M greatly exceeding those of PRC2, seen in DIPG. While PRC2 inhibition requires interaction with H3K27M, we found that this interaction on chromatin is transient, with PRC2 largely being released from H3K27M. Unexpectedly, inhibition persisted even after PRC2 dissociated from H3K27M-containing chromatin, suggesting a lasting impact on PRC2. Furthermore, allosterically activated PRC2 is particularly sensitive to H3K27M, leading to the failure to spread H3K27me from PRC2 recruitment sites and consequently abrogating PRC2's ability to establish H3K27me2-3 repressive chromatin domains. In turn, levels of polycomb antagonists such as H3K36me2 are elevated, suggesting a more global, downstream effect on the epigenome. Together, these findings reveal the conditions required for H3K27M-mediated PRC2 inhibition and reconcile seemingly paradoxical effects of H3K27M on PRC2 recruitment and activity.


Assuntos
Neoplasias do Tronco Encefálico/patologia , Cromatina/química , Glioma/patologia , Histonas/metabolismo , Lisina/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Animais , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Células Cultivadas , Criança , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
9.
Methods Mol Biol ; 1741: 227-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29392705

RESUMO

Gliomas are malignant primary tumors of the central nervous system. Their cell-of-origin is thought to be a neural progenitor or stem cell that acquires mutations leading to oncogenic transformation. Thanks to advances in human stem cell biology, it has become possible to derive human cell types that represent putative cells-of-origin in vitro and model the gliomagenesis process by systematically introducing genetic alterations in these human cells. Here, we present methods to derive human neural stem cells (NSCs) from human embryonic stem cells (hESCs). Because these NSCs are genetically unmodified at baseline, they can be used as a cellular platform to study the effects of individual oncogenic hits in a well-controlled manner in the backdrop of a human genetic background. We also present some key applications of these NSCs, which include their transduction with lentiviral vectors, their neuroglial differentiation and xenografting methods into immunocompromised mice to assess in vivo behavior.


Assuntos
Desdiferenciação Celular , Glioma/patologia , Células-Tronco Embrionárias Humanas/citologia , Modelos Biológicos , Células-Tronco Neurais , Animais , Astrócitos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos/genética , Xenoenxertos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lentivirus/genética , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia
10.
Cell Rep ; 21(5): 1267-1280, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29091765

RESUMO

Low-grade astrocytomas (LGAs) carry neomorphic mutations in isocitrate dehydrogenase (IDH) concurrently with P53 and ATRX loss. To model LGA formation, we introduced R132H IDH1, P53 shRNA, and ATRX shRNA into human neural stem cells (NSCs). These oncogenic hits blocked NSC differentiation, increased invasiveness in vivo, and led to a DNA methylation and transcriptional profile resembling IDH1 mutant human LGAs. The differentiation block was caused by transcriptional silencing of the transcription factor SOX2 secondary to disassociation of its promoter from a putative enhancer. This occurred because of reduced binding of the chromatin organizer CTCF to its DNA motifs and disrupted chromatin looping. Our human model of IDH mutant LGA formation implicates impaired NSC differentiation because of repression of SOX2 as an early driver of gliomagenesis.


Assuntos
Isocitrato Desidrogenase/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Nuclear Ligada ao X/genética , Animais , Apoptose , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Epigênese Genética , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos SCID , Gradação de Tumores , Invasividade Neoplásica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Interferência de RNA , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteína Nuclear Ligada ao X/antagonistas & inibidores , Proteína Nuclear Ligada ao X/metabolismo
11.
Oncotarget ; 8(39): 64932-64953, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029402

RESUMO

Glioblastoma (GBM) stem cells (GSCs) reside in both hypoxic and vascular microenvironments within tumors. The molecular mechanisms that allow GSCs to occupy such contrasting niches are not understood. We used patient-derived GBM cultures to identify GSC subtypes with differential activation of Notch signaling, which co-exist in tumors but occupy distinct niches and match their metabolism accordingly. Multipotent GSCs with Notch pathway activation reside in perivascular niches, and are unable to entrain anaerobic glycolysis during hypoxia. In contrast, most CD133-expressing GSCs do not depend on canonical Notch signaling, populate tumors regardless of local vascularity and selectively utilize anaerobic glycolysis to expand in hypoxia. Ectopic activation of Notch signaling in CD133-expressing GSCs is sufficient to suppress anaerobic glycolysis and resistance to hypoxia. These findings demonstrate a novel role for Notch signaling in regulating GSC metabolism and suggest intratumoral GSC heterogeneity ensures metabolic adaptations to support tumor growth in diverse tumor microenvironments.

12.
Pathogens ; 6(2)2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594343

RESUMO

Herpes simplex virus 1 (HSV-1) uses latency in peripheral ganglia to persist in its human host, however, recurrent reactivation from this reservoir can cause debilitating and potentially life-threatening disease. Most studies of latency use live-animal infection models, but these are complex, multilayered systems and can be difficult to manipulate. Infection of cultured primary neurons provides a powerful alternative, yielding important insights into host signaling pathways controlling latency. However, small animal models do not recapitulate all aspects of HSV-1 infection in humans and are limited in terms of the available molecular tools. To address this, we have developed a latency model based on human neurons differentiated in culture from an NIH-approved embryonic stem cell line. The resulting neurons are highly permissive for replication of wild-type HSV-1, but establish a non-productive infection state resembling latency when infected at low viral doses in the presence of the antivirals acyclovir and interferon-α. In this state, viral replication and expression of a late viral gene marker are not detected but there is an accumulation of the viral latency-associated transcript (LAT) RNA. After a six-day establishment period, antivirals can be removed and the infected cultures maintained for several weeks. Subsequent treatment with sodium butyrate induces reactivation and production of new infectious virus. Human neurons derived from stem cells provide the appropriate species context to study this exclusively human virus with the potential for more extensive manipulation of the progenitors and access to a wide range of preexisting molecular tools.

13.
Case Rep Neurol Med ; 2016: 1217428, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610254

RESUMO

Background. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare malignancy, especially in adults. Case Presentation. A 40-year-old male presented with back pain and urinary hesitancy. MRI revealed a thoracic extradural mass with no osseous involvement. He underwent surgery for gross total resection of the mass, which was diagnosed as Ewing's sarcoma. He was subsequently treated with chemoradiotherapy. He remains disease-free 1 year after surgery. Review of the literature indicated only 45 previously reported cases of spinal epidural extraosseous Ewing's sarcoma in adults. Conclusions. Extraosseous Ewing's sarcoma in the spinal epidural space is a rare clinical entity that should be included in the differential for spinal epidural masses. Its treatment is multidisciplinary but frequently requires surgical intervention due to compressive neurologic symptoms. Gross total resection appears to correlate with improved outcomes.

14.
Surg Neurol Int ; 7: 78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625888

RESUMO

BACKGROUND: Previous reports have proposed an association between traumatic brain injury (TBI) and subsequent glioblastoma (GBM) formation. METHODS: We used literature searches and radiographic evidence from two patients to assess the possibility of a link between TBI and GBM. RESULTS: Epidemiological studies are equivocal on a possible link between brain trauma and increased risk of malignant glioma formation. We present two case reports of patients with GBM arising at the site of prior brain injury. CONCLUSION: The hypothesis that TBI may predispose to gliomagenesis is disputed by several large-scale epidemiological studies, but supported by some. Radiographic evidence from two cases presented here suggest that GBM formed at the site of brain injury. We propose a putative pathogenesis model that connects post-traumatic inflammation, stem and progenitor cell transformation, and gliomagenesis.

15.
Adv Radiat Oncol ; 1(4): 373-381, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28740908

RESUMO

PURPOSE: Maximum dose to the left anterior descending artery (LADmax) is an important physical constraint to reduce the risk of cardiovascular toxicity. We generated a simple algorithm to guide the positioning of the tangent fields to reliably maintain LADmax <10 Gy. METHODS AND MATERIALS: Dosimetric plans from 146 consecutive women treated prone to the left breast enrolled in prospective protocols of accelerated whole breast radiation therapy, with a concomitant daily boost to the tumor bed (40.5 Gy/15 fraction to the whole breast and 48 Gy to the tumor bed), provided the training set for algorithm development. Scatter plots and correlation coefficients were used to describe the bivariate relationships between LADmax and several parameters: distance from the tumor cavity to the tangent field edge, cavity size, breast separation, field size, and distance from the tangent field. A logistic sigmoid curve was used to model the relationship of LADmax and the distance from the tangent field. Furthermore, we tested this prediction model on a validation data set of 53 consecutive similar patients. RESULTS: A lack of linear relationships between LADmax and distance from cavity to LAD (-0.47), cavity size (-0.18), breast separation (-0.02), or field size (-0.28) was observed. In contrast, distance from the tangent field was highly negatively correlated to LADmax (-0.84) and was used in the models to predict LADmax. From a logistic sigmoid model we selected a cut-point of 2.46 mm (95% confidence interval, 2.19-2.74 mm) greater than which LADmax is <10 Gy (95% confidence interval, 9.30-10.72 Gy) and LADmean is <3.3 Gy. CONCLUSIONS: Placing the edge of the tangents at least 2.5 mm from the closest point of the contoured LAD is likely to assure LADmax is <10 Gy and LADmean is <3.3 Gy in patients treated with prone accelerated breast radiation therapy.

16.
Radiat Oncol ; 10: 101, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25902707

RESUMO

BACKGROUND: Small cell carcinoma of the rectum is a rare neoplasm with scant literature to guide treatment. We used the Surveillance Epidemiology and End Results (SEER) database to investigate the role of radiation therapy in the treatment of this cancer. METHODS: The SEER database (National Cancer Institute) was queried for locoregional cases of small cell rectal cancer. Years of diagnosis were limited to 1988-2010 (most recent available) to reduce variability in staging criteria or longitudinal changes in surgery and radiation techniques. Two month conditional survival was applied to minimize bias by excluding patients who did not survive long enough to receive cancer-directed therapy. Patient demographics between the RT and No_RT groups were compared using Pearson Chi-Square tests. Overall survival was compared between patients who received radiotherapy (RT, n = 43) and those who did not (No_RT, n = 28) using the Kaplan-Meier method. Multivariate Cox proportional hazards model was used to evaluate important covariates. RESULTS: Median survival was significantly longer for patients who received radiation compared to those who were not treated with radiation; 26 mo vs. 8 mo, respectively (log-rank P = 0.009). We also noted a higher 1-year overall survival rate for those who received radiation (71.1% vs. 37.8%). Unadjusted hazard ratio for death (HR) was 0.495 with the use of radiation (95% CI 0.286-0.858). Among surgery, radiotherapy, sex and age at diagnosis, radiation therapy was the only significant factor for overall survival with a multivariate HR for death of 0.393 (95% CI 0.206-0.750, P = 0.005). CONCLUSIONS: Using SEER data, we have identified a significant survival advantage with the use of radiation therapy in the setting of rectal small cell carcinoma. Limitations of the SEER data apply to this study, particularly the lack of information on chemotherapy usage. Our findings strongly support the use of radiation therapy for patients with locoregional small cell rectal cancer.


Assuntos
Carcinoma de Células Pequenas/radioterapia , Neoplasias Retais/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Alquilantes/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/mortalidade , Carcinoma de Células Pequenas/cirurgia , Terapia Combinada , Procedimentos Cirúrgicos do Sistema Digestório , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Compostos Organoplatínicos/administração & dosagem , Modelos de Riscos Proporcionais , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/mortalidade , Neoplasias Retais/cirurgia , Estudos Retrospectivos , Programa de SEER , Análise de Sobrevida , Estados Unidos/epidemiologia
17.
PLoS One ; 9(12): e116114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541984

RESUMO

Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.


Assuntos
Antígenos CD/imunologia , Neoplasias Encefálicas/patologia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Glioblastoma/patologia , Glicoproteínas/imunologia , Células-Tronco Neoplásicas/patologia , Peptídeos/imunologia , Transdução Genética , Antígeno AC133 , Animais , Antígenos CD/análise , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Glicoproteínas/análise , Humanos , Lentivirus/genética , Lentivirus/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Peptídeos/análise , Células Tumorais Cultivadas
18.
World J Stem Cells ; 6(1): 43-52, 2014 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-24567787

RESUMO

Glioma incidence rates in the United States are near 20000 new cases per year, with a median survival time of 14.6 mo for high-grade gliomas due to limited therapeutic options. The origins of these tumors and their many subtypes remain a matter of investigation. Evidence from mouse models of glioma and human clinical data have provided clues about the cell types and initiating oncogenic mutations that drive gliomagenesis, a topic we review here. There has been mixed evidence as to whether or not the cells of origin are neural stem cells, progenitor cells or differentiated progeny. Many of the existing murine models target cell populations defined by lineage-specific promoters or employ lineage-tracing methods to track the potential cells of origin. Our ability to target specific cell populations will likely increase concurrently with the knowledge gleaned from an understanding of neurogenesis in the adult brain. The cell of origin is one variable in tumorigenesis, as oncogenes or tumor suppressor genes may differentially transform the neuroglial cell types. Knowledge of key driver mutations and susceptible cell types will allow us to understand cancer biology from a developmental standpoint and enable early interventional strategies and biomarker discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...