Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36662010

RESUMO

The abandonment of traditional agricultural practices and subsequent succession are major threats to many open-adapted species and species-rich ecosystems. Viticulture on steep slopes has recently suffered from strong declines due to insufficient profitability, thus increasing the area of fallow land considerably. Changing cultivation systems from vertically oriented to modern vineyard terraces offers an opportunity to maintain management economically viable and thus reduces further abandonment. Hillside parallel terraces favor mechanization, and their embankments offer large undisturbed areas that could provide valuable habitats. We investigated the effects of vineyard abandonment, different vineyard management types (vertically oriented vs. terraced), and local parameters on Orthoptera diversity in 45 study sites along the Upper Middle Rhine Valley in Germany. Our results show that woody structures and vineyard abandonment reduced Orthoptera diversity at the local and landscape scale due to decreased habitat quality, especially for open-adapted species. In contrast, open inter-rows of actively managed vineyard types supported heat-adapted Caelifera species. On terrace embankments, extensive management and taller vegetation benefited Ensifera species, while short and mulched vegetation in vertically oriented vineyards favored the dominance of one single Caelifera species. Our results highlight the significance of maintaining viticultural management on steep slopes for the preservation of both open-adapted Orthoptera species and the cultural landscape.

2.
PeerJ ; 10: e13566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860044

RESUMO

The florivorous apple blossom weevil, Anthonomus pomorum (Coleoptera: Curculionidae), is the most economically relevant insect pest of European apple orchards in early spring. Neither efficient monitoring nor ecologically sustainable management of this insect pest has yet been implemented. To identify heritable traits of apple trees that might influence the host selection of A. pomorum, we compared the susceptibility of apple tree species using infestation rates of the domesticated apple, Malus domestica (Rosaceae: Pyreae), and the European crab apple, M. sylvestris. We evaluated the suitability of the two apple species for A. pomorum by quantifying the mass of weevil offspring. Because volatile organic compounds (VOCs) emitted from flower buds of the domesticated apple have previously been suggested to mediate female weevil preference via olfactory cues, we conducted bioassay experiments with blossom buds of both apple species to explore the olfactory preference of adult weevils and, furthermore, identified the headspace VOCs of blossom buds of both apple species through GC-MS analysis. The infestation analysis showed that A. pomorum infested the native European crab apple more prevalently than the domesticated apple, which originated from Central Asia. The European crab apple also appeared to be better suited for weevil larval development than the domesticated apple, as weevils emerging from M. sylvestris had a higher body mass than those emerging from M. domestica. These field observations were supported by olfactory bioassays, which showed that A. pomorum significantly preferred the odor of M. sylvestris buds compared to the odor of M. domestica buds. The analysis of headspace VOCs indicated differences in the blossom bud volatiles separating several M. domestica individuals from M. sylvestris individuals. This knowledge might be employed in further studies to repel A. pomorum from M. domestica blossom buds.


Assuntos
Besouros , Malus , Compostos Orgânicos Voláteis , Gorgulhos , Humanos , Animais , Árvores , Olfato , Compostos Orgânicos Voláteis/análise
3.
PeerJ ; 9: e11540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123600

RESUMO

Biological control of pest insects by natural enemies may be an effective, cheap and environmentally friendly alternative to synthetic pesticides. The cosmopolitan parasitoid wasp species Bracon brevicornis Wesmael and B. hebetor Say (Hymenoptera: Braconidae) use lepidopteran species as hosts, including insect pests like Ephestia kuehniella or Ostrinia nubilalis. Here, we compare the reproductive success of both Bracon species on E. kuehniella in a laboratory experiment. We asked (1) how the reproductive success on a single host larva changes with temperature, (2) how it changes with temperature when more host larvae are present and (3) how temperature and availability of host larvae influence the efficacy of Bracon species as biological control agents. In general, differences between B. brevicornis and B. hebetor have been small. For rearing both Bracon species in the laboratory on one host larva, a temperature between 20-27 °C seems appropriate to obtain the highest number of offspring with a female-biased sex ratio. Rearing the braconid wasps on more than one host larva revealed a higher number of total offspring but less offspring per host larva on average. Again, highest numbers of offspring hatched at 27 °C and the sex ratio was independent from temperature. Although no parasitoids hatched at 12 °C and only few at 36 °C, host larvae were still paralyzed. The efficacy of B. brevicornis was higher than 80% at all numbers of host larvae presented at all temperatures while the efficacy of B. hebetor was less than 80% at 12 °C and 27 °C at low numbers of host larvae presented. In conclusion, practitioners can use either B. brevicornis or B. hebetor at low and high temperatures and at varying host densities to achieve high pest control efficacy.

4.
Elife ; 102021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132196

RESUMO

In the course of global climate change, Central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought-damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated single-nucleotide polymorphisms (SNPs) throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. An SNP assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.


Climate change is having a serious impact on many ecosystems. In the summer of 2018 and 2019, around two thirds of European beech trees were damaged or killed by extreme drought. It is critical to keep these beech woods healthy, as they are central to the survival of over 6,000 other species of animals and plants. The level of damage caused by the drought varied between forests. However, not all the trees in each forest responded in the same way, with severely damaged trees often sitting next to fully healthy ones. This suggests that the genetic make-up of each tree determines how well it can adapt to drought rather than its local environment. To investigate this further, Pfenninger et al. studied the genome of over 400 European beech trees from the Hesse region in Germany. The samples came from pairs of neighbouring trees that had responded differently to the droughts. The analysis found more than 80 parts of the genome that differed between healthy and damaged trees. Pfenninger et al. then used this information to create a genetic test which can quickly and inexpensively predict how well an individual beech tree might survive in a drought. Applying this test to another 92 trees revealed that it can reliably detect which ones were healthy and which ones were damaged. Beech forests are typically managed by private owners, agencies or breeders that could use this genetic test to select and reproduce trees that are better adapted to drought. The goal now is to develop the test so that it can be used more widely to manage European beech trees and potentially other species.


Assuntos
Aclimatação/genética , Secas , Fagus/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
PLoS One ; 15(6): e0234327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516354

RESUMO

Massive declines in insect biodiversity and biomass are reported from many regions and habitats. In urban areas, creation of native wildflower meadows is one option to support insects and reduce maintenance costs of urban green spaces. However, benefits for insect conservation may depend on previous land use, and the size and location of new wildflower meadows. We show effects of conversion of roadside plantings-from exotic shrubs into wildflower meadows-on (1) the abundance of 13 arthropod taxa-Opiliones, Araneae, Isopoda, Collembola, Orthoptera, Aphidoidea, Auchenorrhyncha, Heteroptera, Coleoptera, Nematocera, Brachycera, Apocrita, Formicidae-and (2) changes in maintenance costs. We assessed the influence of vegetation type (meadow vs. woody), meadow age, size, location (distance to city boundary), and mowing regime. We found many, but not all, arthropod taxa profiting from meadows in terms of arthropod activity abundance in pitfall traps and arthropod density in standardized suction samples. Arthropod number in meadows was 212% higher in pitfall traps and 260% higher in suction samples compared to woody vegetation. The increased arthropod number in meadows was independent of the size and isolation of green spaces for most taxa. However, mowing regime strongly affected several arthropod taxa, with an increase of 63% of total arthropod density in unmown compared to mown meadow spots. Costs of green space maintenance were fivefold lower for meadows than for woody vegetation. Our study shows that (1) many different arthropod taxa occur in roadside vegetation in urban areas, (2) replacement of exotic woody vegetation by native wildflower meadows can significantly increase arthropod abundance, especially if meadow management permits temporarily unmown areas, and (3) maintenance costs can be considerably reduced by converting woody plantings into wildflower meadows. Considering many groups of arthropods, our study provides new insights into possible measures to support arthropods in urban environments.


Assuntos
Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Insetos/metabolismo , Animais , Biodiversidade , Biomassa , Cidades , Ecossistema , Meio Ambiente , Espécies Introduzidas/economia , Magnoliopsida/crescimento & desenvolvimento , Plantas , Solo , Microbiologia do Solo
6.
PeerJ ; 8: e8769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206451

RESUMO

Seed survival is of great importance for the performance of plant species and it is strongly affected by post-dispersal seed removal by either different animals such as granivorous species and secondary dispersers or abiotic conditions such as wind or water. The success of post-dispersal seed removal depends on seed specific traits including seed size, the presence of coats or elaiosomes, the mode of seed dispersion, and on the habitat in which seeds happen to arrive. In the present study we asked how seed traits (dehulled vs. intact; size; dispersal mode), habitat (forest vs. grassland), and time of day (night vs. day) influence post-dispersal seed removal of the four plant species Chelidonium majus, Lotus corniculatus, Tragopogon pratensis and Helianthus annuus. Seed removal experiments were performed in three regions in Hesse, Germany. The results showed different, inconsistent influences of time of day, depending on habitat and region, but consistent variation across seed types. C. majus and dehulled H. annuus seeds had the fastest removal rates. The impact of the habitat on post-dispersal seed removal was very low, only intact H. annuus seeds were removed at significantly higher rates in grasslands than in forests. Our study demonstrates consistent differences across seed types across different habitats and time: smaller seeds and those dispersed by animals had a faster removal rate. It further highlights that experimental studies need to consider seeds in their natural form to be most realistic.

7.
Oecologia ; 186(2): 529-540, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29204693

RESUMO

The current biodiversity decline through anthropogenic land-use not only involves local species losses, but also homogenization of communities, with a few generalist species benefitting most from human activities. Most studies assessed community heterogeneity (ß-diversity) on larger scales by comparing different sites, but little is known about impacts on ß-diversity within each site, which is relevant for understanding variation in the level of α-diversity, the small-scale distribution of species and associated habitat heterogeneity. To obtain our dataset with 36,899 individuals out of 117 different plant- and leafhopper (Auchenorrhyncha) species, we sampled communities of 140 managed grassland sites across Germany by quantitative vacuum suction of five 1 m2 plots on each site. Sites differed in land-use intensity as characterized by intensity of fertilization, mowing and grazing. Our results demonstrate a significant within-site homogenization of plant- and leafhopper communities with increasing land-use intensity. Correspondingly, density (- 78%) and γ-diversity (- 35%) declined, particularly with fertilization and mowing intensity. More than 34% of plant- and leafhopper species were significant losers and only 6% were winners of high land-use intensity, with abundant and widespread species being less affected. Increasing land-use intensity adversely affected dietary specialists and promoted generalist species. Our study emphasizes considerable, multifaceted effects of land-use intensification on species loss, with a few dominant generalists winning, and an emerging trend towards more homogenized assemblages. By demonstrating homogenization for the first time within sites, our study highlights that anthropogenic influences on biodiversity even occur on small scales.


Assuntos
Pradaria , Hemípteros , Animais , Biodiversidade , Alemanha , Humanos , Plantas
8.
PLoS One ; 10(5): e0126140, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938417

RESUMO

Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that - despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees - suggesting the action of associational resistance processes - and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.


Assuntos
Ecossistema , Fagus , Herbivoria , Folhas de Planta , Árvores , Biodiversidade , Florestas , Alemanha
9.
Oecologia ; 169(2): 477-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22159991

RESUMO

Heterospecific neighbors may reduce damage to a focal plant by lowering specialist herbivore loads (associational resistance hypothesis), or enhance damage by increasing generalist herbivore loads (associational susceptibility hypothesis). We tested the associational effects of tree diversity on herbivory patterns of the tropical focal tree Tabebuia rosea in an experimental plantation setup, which contained tree monocultures and mixed stands. We found higher herbivore damage to T. rosea at higher tree diversity, indicating that T. rosea did not benefit from associational resistance but rather experienced associational susceptibility. The specific consideration of the two dominant insect herbivore species of T. rosea, the specialist chrysomelid Walterianella inscripta and the specialist pyralid Eulepte gastralis, facilitated understanding of the detected damage patterns. Tree diversity exerted opposite effects on tree infestation by the two herbivores. These findings point to resource concentration effects for the chrysomelid beetle (favored by tree monoculture) and to resource dilution effects for the pyralid caterpillar (favored by tree mixture) as underlying mechanisms of herbivore distribution. A strong contribution of the pyralid to overall damage patterns in diversified stands suggests that associational susceptibility may not necessarily be related to higher abundances of generalist herbivores but may also result from specialized herbivores affected by resource dilution effects. Thus, the identity and biology of herbivore species has to be taken into account when attempting to predict damage patterns in forest ecosystems.


Assuntos
Herbivoria , Insetos/fisiologia , Árvores , Animais , Biodiversidade , Comportamento Alimentar/fisiologia , Panamá , Folhas de Planta , Tabebuia
10.
Planta ; 233(6): 1199-207, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21327817

RESUMO

Induction of plant resistance by herbivory is a complex process, which follows a temporal dynamic and varies spatially at the within-plant scale. This study aimed at improving the understanding of the induction process in terms of time scale and within-plant allocation, using apple tree seedlings (Malus × domestica) as plant model. Feeding preferences of a leaf-chewing insect (Spodoptera littoralis) for previously damaged and undamaged plants were assessed for six different time intervals with respect to the herbivore damage treatment and for three leaf positions. In addition, main secondary defense compounds were quantified and linked to herbivore feeding preferences. Significant herbivore preference for undamaged plants (induced resistance) was first observed 3 days after herbivore damage in the most apical leaf. Responses were delayed in the other leaf positions, and induced resistance decreased within 10 days after herbivore damage simultaneously in all tested leaf positions. Chemical analysis revealed higher concentrations of the flavonoid phloridzin in damaged plants as compared to undamaged plants. This indicates that herbivore preference for undamaged apple plants may be linked to phloridzin, which is the main secondary metabolite of apple leaves. The observed time course and distribution of resistance responses within plants contribute to the understanding of induction processes and patterns, and support the optimal defense theory stating young tissue to be prioritized. Moreover, induced resistance responses occurred also basipetally in leaves below the damage site, which suggests that signaling pathways involved in resistance responses are not unidirectional.


Assuntos
Malus/parasitologia , Spodoptera/fisiologia , Animais , Mecanismos de Defesa , Comportamento Alimentar , Flavonoides/análise , Interações Hospedeiro-Parasita , Malus/fisiologia , Mecanotransdução Celular/fisiologia , Floretina/análise , Florizina/análise , Folhas de Planta/química , Folhas de Planta/parasitologia , Plântula/parasitologia , Plântula/fisiologia
11.
J Econ Entomol ; 101(4): 1341-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18767746

RESUMO

In high-value crops such as apple, Malus X domestica (Borkh.), insecticidal pest control is of high relevance. The use of resistant apple cultivars can increase the sustainability of pest management in apple orchards. Besides variation in plant chemistry that may influence plant resistance by antibiosis or antixenosis, plant growth characteristics also can affect plant susceptibility to pests such as aphids. Variable susceptibility to the apple aphid, Aphis pomi De Geer (Hemiptera: Aphididae), has been described for different apple cultivars. These observations were based on phenotypic surveys and no information on genetically based apple resistance to A. pomi is yet available. The objective of this study was to relate shoot growth characteristics with aphid population development, and to assess the genetic background of apple antibiosis-based resistance to A. pomi by quantitative trait loci (QTL) analysis. Aphid population development was repeatedly studied in the field in sleeve cages attached to 200 apple trees of different genotypes. Aphid population development was positively correlated to shoot length and growth, and it also was affected by climatic conditions. Indications for antibiosis-based resistance to A. pomi remained weak in the studied apple genotypes, and the only detected putative QTL on linkage group 11 of'Fiesta' apples was not stable for the different replications of the experiment. This lack of quantifiable resistance may be partly explained by environmental conditions related to aphid development in sleeve cages.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Imunidade Inata/genética , Malus/parasitologia , Brotos de Planta/parasitologia , Animais , Clima , Genótipo , Malus/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Crescimento Demográfico , Locos de Características Quantitativas
12.
J Econ Entomol ; 101(1): 81-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18330120

RESUMO

Monitoring systems based on traps with female attractants are expected to enhance forecasting of insect population size and damage. The optimal placement of such traps should match the small-scale distribution of ovipositing females. In the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), fruit infestation takes place in proximity to the oviposition site. We characterized the within-tree distribution of codling moth infestations and the size of uninfested fruit based on a survey of 40,000 apples (Malus spp.) from trees belonging to 160 different apple genotypes and growing in two different environments. Each tree was subdivided into 12 sectors, considering canopy aspect (north, east, south, and west) and canopy height (bottom, middle, and top). This study revealed that fruit infestation by the first but not by the second generation of larvae correlated significantly with canopy aspect. Similarly, fruit size differed significantly between the north- and the south-facing tree side for the period of infestation by the first but not by the second larval generation. Significantly lower fruit infestation was observed on the north- compared with the south- or east-facing tree side for the first generation. A significant influence of canopy height on larval infestation was observed in three of eight assessments, in which the middle height level showed the highest infestations. Significant differences in within-tree distribution of codling moth infestation suggest that oviposition preference is guided by nonrandom factors including microclimate, fruit phenology, and wind direction. These cultivar-independent findings should be considered in future monitoring systems that focus on female codling moth.


Assuntos
Frutas/parasitologia , Malus/parasitologia , Mariposas/fisiologia , Oviposição/fisiologia , Folhas de Planta/fisiologia , Animais , Ecossistema , Feminino , Frutas/crescimento & desenvolvimento , Controle de Insetos , Larva , Masculino , Malus/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , Densidade Demográfica
13.
Ecology ; 88(4): 1012-20, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17536716

RESUMO

Generalist insect herbivores may profit by feeding on a mixture of plant species that differ in nutritional quality. Herbivore performance can also be affected by intraspecific host plant variation. However, it is unknown whether conspecific plant individuals differ sufficiently to promote diet-mixing behavior in specialist herbivores. We experimentally tested this "specialist diet-mixing hypothesis" for specialist caterpillars (Chrysopsyche imparilis, Lasiocampidae) in a West African savanna. The caterpillars switched regularly between host tree individuals (Combretum fragrans, Combretaceae). To examine whether switching benefited caterpillar performance via diet-mixing, the caterpillars were reared either on leaves from several plant individuals (mixed diet) or on leaves from a single plant. The strongest effect of diet-mixing was found for fecundity, with females reared on a mixed diet laying significantly more eggs than sisters receiving a single-plant diet. In addition, a mixed diet decreased variability in egg size and increased the growth of second-instar caterpillars. Supplementary food choice experiments were conducted to assess a potential influence of lowered host quality (induced by herbivory) on caterpillar behavior; no such effect was found. By linking intraspecific host-switching behavior and herbivore performance, this study provides new information on the relevance of intraspecific plant variation for herbivorous insects.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Comportamento Alimentar/fisiologia , Fertilidade/fisiologia , Lepidópteros/fisiologia , Plantas/parasitologia , Adaptação Fisiológica , Animais , Feminino , Preferências Alimentares , Larva/crescimento & desenvolvimento , Larva/fisiologia , Lepidópteros/crescimento & desenvolvimento , Masculino , Valor Nutritivo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...