Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 104(20): 203601, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867026

RESUMO

We introduce lossless state detection of trapped neutral atoms based on cavity-enhanced fluorescence. In an experiment with a single 87Rb atom, a hyperfine-state-detection fidelity of 99.4% is achieved in 85 µs. The quantum bit is interrogated many hundreds of times without loss of the atom while a result is obtained in every readout attempt. The fidelity proves robust against atomic frequency shifts induced by the trapping potential. Our scheme does not require strong coupling between the atom and cavity and can be generalized to other systems with an optically accessible quantum bit.

2.
Phys Rev Lett ; 102(3): 030501, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19257335

RESUMO

An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic--an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.

3.
Phys Rev Lett ; 101(22): 223601, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19113483

RESUMO

We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments.

4.
Phys Rev Lett ; 100(15): 150404, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18518088

RESUMO

We observe violation of a Bell inequality between the quantum states of two remote Yb+ ions separated by a distance of about 1 m with the detection loophole closed. The heralded entanglement of two ions is established via interference and joint detection of two emitted photons, whose polarization is entangled with each ion. The entanglement of remote qubits is also characterized by full quantum state tomography.

5.
Nature ; 449(7158): 68-71, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17805290

RESUMO

Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications.

6.
Phys Rev Lett ; 97(4): 040505, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16907559

RESUMO

We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.

7.
Phys Rev Lett ; 93(9): 090410, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15447086

RESUMO

We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.

8.
Nature ; 428(6979): 153-7, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15014494

RESUMO

An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a 'quantum internet'. Because quantum states cannot in general be copied, quantum information can only be distributed in these and other applications by entangling the quantum memory with the communication channel. Here we report quantum entanglement between an ideal quantum memory--represented by a single trapped 111Cd+ ion--and an ideal quantum communication channel, provided by a single photon that is emitted spontaneously from the ion. Appropriate coincidence measurements between the quantum states of the photon polarization and the trapped ion memory are used to verify their entanglement directly. Our direct observation of entanglement between stationary and 'flying' qubits is accomplished without using cavity quantum electrodynamic techniques or prepared non-classical light sources. We envision that this source of entanglement may be used for a variety of quantum communication protocols and for seeding large-scale entangled states of trapped ion qubits for scalable quantum computing.

9.
Opt Lett ; 28(17): 1582-4, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12956386

RESUMO

We report new techniques for driving high-fidelity stimulated Raman transitions in trapped-ion qubits. An electro-optic modulator induces sidebands on an optical source, and interference between the sidebands allows coherent Rabi transitions to be efficiently driven between hyperfine ground states separated by 14.53 GHz in a single trapped 111Cd+ ion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...