Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
iScience ; 27(3): 109255, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444605

RESUMO

Tubular injury is the hallmark of acute kidney injury (AKI) with a tremendous impact on patients and health-care systems. During injury, any differentiated proximal tubular cell (PT) may transition into a specific injured phenotype, so-called "scattered tubular cell" (STC)-phenotype. To understand the fate of this specific phenotype, we generated transgenic mice allowing inducible, reversible, and irreversible tagging of these cells in a murine AKI model, the unilateral ischemia-reperfusion injury (IRI). For lineage tracing, we analyzed the kidneys using single-cell profiling during disease development at various time points. Labeled cells, which we defined by established endogenous markers, already appeared 8 h after injury and showed a distinct expression set of genes. We show that STCs re-differentiate back into fully differentiated PTs upon the resolution of the injury. In summary, we show the dynamics of the phenotypic transition of PTs during injury, revealing a reversible transcriptional program as an adaptive response during disease.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38037533

RESUMO

BACKGROUND AND HYPOTHESIS: Glucocorticoids are the treatment of choice for proteinuric patients with minimal-change disease (MCD) and primary focal and segmental glomerulosclerosis (FSGS). Immunosuppressive as well as direct effects on podocytes are believed to mediate their actions. In this study, we analyzed the anti-proteinuric effects of inhibition of the glucocorticoid receptor (GR) in glomerular epithelial cells, including podocytes. METHODS: We employed genetic and pharmacological approaches to inhibit the GR. Genetically, we used Pax8-Cre/GRfl/fl mice to specifically inactivate the GR in kidney epithelial cells. Pharmacologically, we utilized a glucocorticoid antagonist called mifepristone. RESULTS: Genetic inactivation of GR, specifically in kidney epithelial cells, using Pax8-Cre/GRfl/fl mice, ameliorated proteinuria following protein overload. We further tested the effects of pharmacological GR inhibition in three models and species: the puromycin-aminonucleoside-induced nephrosis model in rats, the protein overload model in mice and the inducible transgenic NTR/MTZ zebrafish larvae with specific and reversible podocyte injury. In all three models, both pharmacological GR activation and inhibition consistently and significantly ameliorated proteinuria. Additionally, we translated our findings to humans, where three nephrotic adult patients with MCD or primary FSGS with contraindications or insufficient responses to corticosteroids, were treated with mifepristone. This treatment resulted in a clinically relevant reduction of proteinuria. CONCLUSIONS: Thus, across multiple species and proteinuria models, both genetic and pharmacological GR inhibition was at least as effective as pronounced GR activation. While, the mechanism remains perplexing, GR inhibition may be a novel and targeted therapeutic approach to treat glomerular proteinuria potentially bypassing adverse actions of steroids.

4.
NAR Genom Bioinform ; 5(1): lqad018, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879901

RESUMO

Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression exist, we still lack methods to learn differential regulatory disease mechanisms directly from the single-cell data. Here, we provide a new methodology, named DiNiro, to unravel such mechanisms de novo and report them as small, easily interpretable transcriptional regulatory network modules. We demonstrate that DiNiro is able to uncover novel, relevant, and deep mechanistic models that not just predict but explain differential cellular gene expression programs. DiNiro is available at https://exbio.wzw.tum.de/diniro/.

5.
Front Physiol ; 13: 933677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755431

RESUMO

Acute Kidney injury is a major clinical problem associated with increased morbidity and mortality. Despite, intensive research the clinical outcome remains poor and apart from supportive therapy no other specific therapy exists. Single cell technologies have enabled us to get deeper insights into the transcriptome of individual cells in complex tissues like the kidney. With respect to kidney injury, this would allow us to better define the unique role of individual cell populations in the pathophysiology of acute kidney injury and progression to chronic kidney disease. In this mini review, we would like to give an overview and discuss the current major findings in the field of acute kidney injury through Single-Cell technologies.

6.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927672

RESUMO

In the glomerulus, Bowman's space is formed by a continuum of glomerular epithelial cells. In focal segmental glomerulosclerosis (FSGS), glomeruli show segmental scarring, a result of activated parietal epithelial cells (PECs) invading the glomerular tuft. The segmental scars interrupt the epithelial continuum. However, non-sclerotic segments seem to be preserved even in glomeruli with advanced lesions. We studied the histology of the segmental pattern in Munich Wistar Frömter rats, a model for secondary FSGS. Our results showed that matrix layers lined with PECs cover the sclerotic lesions. These PECs formed contacts with podocytes of the uninvolved tuft segments, restoring the epithelial continuum. Formed Bowman's spaces were still connected to the tubular system. In biopsies of patients with secondary FSGS, we also detected matrix layers formed by PECs, separating the uninvolved from the sclerotic glomerular segments. PECs have a major role in the formation of glomerulosclerosis; we show here that in FSGS they also restore the glomerular epithelial cell continuum that surrounds Bowman's space. This process may be beneficial and indispensable for glomerular filtration in the uninvolved segments of sclerotic glomeruli.


Assuntos
Glomerulosclerose Segmentar e Focal , Animais , Cápsula Glomerular/patologia , Células Epiteliais/patologia , Feminino , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Glomérulos Renais/patologia , Masculino , Ratos , Ratos Wistar
7.
Cell Physiol Biochem ; 55(S4): 1-12, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33851800

RESUMO

BACKGROUND/AIMS: Podocytes are lost in most glomerular diseases, leading to glomerulosclerosis and progressive kidney disease. It is generally assumed, that podocytes are exposed to the filtration flow and thus to significant shear forces driving their detachment from the glomerular basement membrane (GBM). In this context, foot process effacement has been proposed as potential adaptive response to increase adhesion of podocytes to the GBM. METHODS: We have tested these hypotheses using optical clearing and high-resolution 3-dimensional morphometric analysis in the isolated perfused murine kidney. We investigated the dynamics of podocyte detachment at different perfusion pressures (50, 300 and more than 450 mmHg) in healthy young or old mice (20 vs. 71 weeks of age), or mice injected with anti-GBM serum to induce global foot process effacement. RESULTS: Results show that healthy podocytes in young mice are tightly attached onto the GBM and even supramaximal pressures did not cause significant detachment. Compared to young mice, in aged mice and mice with anti-GBM nephritis and foot process effacement, gradual progressive loss of podocytes had occurred already before perfusion. High perfusion pressures resulted in a relatively minor additional loss of podocytes in aged mice. In mice with anti-GBM nephritis significant additional podocyte loss occurred at this early time point when increasing perfusion pressures to 300 mmHg or higher. CONCLUSION: This work provides the first experimental evidence that podocytes are extraordinarily resistant to acutely increased perfusion pressures in an ex vivo isolated kidney perfusion model. Only in glomerular disease, significant numbers of injured podocytes detached following acute increases in perfusion pressure.


Assuntos
Membrana Basal Glomerular/patologia , Nefropatias/patologia , Podócitos/patologia , Envelhecimento , Animais , Adesão Celular , Sobrevivência Celular , Feminino , Membrana Basal Glomerular/citologia , Masculino , Camundongos , Perfusão , Podócitos/citologia , Pressão
8.
Front Med (Lausanne) ; 8: 814497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096904

RESUMO

Organ fibrogenesis is characterized by a common pathophysiological final pathway independent of the underlying progressive disease of the respective organ. This makes it particularly suitable as a therapeutic target. The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was hosted from 2009 to 2021 by the Medical Faculties of RWTH Aachen University and the University of Bonn. This consortium had the ultimate goal of discovering new common but also different fibrosis pathways in the liver and kidneys. It finally successfully identified new mechanisms and established novel therapeutic approaches to interfere with hepatic and renal fibrosis. This review covers the consortium's key kidney-related findings, where three overarching questions were addressed: (i) What are new relevant mechanisms and signaling pathways triggering renal fibrosis? (ii) What are new immunological mechanisms, cells and molecules that contribute to renal fibrosis?, and finally (iii) How can renal fibrosis be modulated?

9.
Nephrol Dial Transplant ; 36(11): 1968-1975, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666119

RESUMO

Acute tubular injury accounts for the most common intrinsic cause for acute kidney injury. Normally, the tubular epithelium is mitotically quiescent. However, upon injury, it can show a brisk capacity to regenerate and repair. The scattered tubular cell (STC) phenotype was discovered as a uniform reaction of tubule cells triggered by injury. The STC phenotype is characterized by a unique protein expression profile, increased robustness during tubular damage and increased proliferation. Nevertheless, the exact origin and identity of these cells have been unveiled only in part. Here, we discuss the classical concept of renal regeneration. According to this model, surviving cells dedifferentiate and divide to replace neighbouring lost tubular cells. However, this view has been challenged by the concept of a pre-existing and fixed population of intratubular progenitor cells. This review presents a significant body of previous work and animal studies using lineage-tracing methods that have investigated the regeneration of tubular cells. We review the experimental findings and discuss whether they support the progenitor hypothesis or the classical concept of renal tubular regeneration. We come to the conclusion that any proximal tubular cell may differentiate into the regenerative STC phenotype upon injury thus contributing to regeneration, and these cells differentiate back into tubular cells once regeneration is finished.


Assuntos
Injúria Renal Aguda , Regeneração , Animais , Células Epiteliais , Rim , Túbulos Renais
10.
Sci Rep ; 10(1): 17726, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082420

RESUMO

Hypothermic oxygenated machine perfusion (HOPE) was recently tested in preclinical trials in kidney transplantation (KT). Here we investigate the effects of HOPE on extended-criteria-donation (ECD) kidney allografts (KA). Fifteen ECD-KA were submitted to 152 ± 92 min of end-ischemic HOPE and were compared to a matched group undergoing conventional-cold-storage (CCS) KT (n = 30). Primary (delayed graft function-DGF) and secondary (e.g. postoperative complications, perfusion parameters) endpoints were analyzed within 6-months follow-up. There was no difference in the development of DGF between the HOPE and CCS groups (53% vs. 33%, respectively; p = 0.197). Serum urea was lower following HOPE compared to CCS (p = 0.003), whereas the CCS group displayed lower serum creatinine and higher eGFR rates on postoperative days (POD) 7 and 14. The relative decrease of renal vascular resistance (RR) following HOPE showed a significant inverse association with serum creatinine on POD1 (r = - 0.682; p = 0.006) as well as with serum urea and eGFR. Besides, the relative RR decrease was more prominent in KA with primary function when compared to KA with DGF (p = 0.013). Here we provide clinical evidence on HOPE in ECD-KT after brain death donation. Relative RR may be a useful predictive marker for KA function. Further validation in randomized controlled trials is warranted.Trial registration: clinicaltrials.gov (NCT03378817, Date of first registration: 20/12/2017).


Assuntos
Aloenxertos/fisiologia , Função Retardada do Enxerto/prevenção & controle , Transplante de Rim , Rim/fisiologia , Preservação de Órgãos/métodos , Obtenção de Tecidos e Órgãos/métodos , Idoso , Temperatura Baixa , Feminino , Seguimentos , Sobrevivência de Enxerto , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Perfusão , Coleta de Tecidos e Órgãos , Transplante Homólogo
11.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32709711

RESUMO

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Integrina beta3/fisiologia , Podócitos/fisiologia , Proteína C/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Citoproteção , Receptor de Proteína C Endotelial/fisiologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-1/fisiologia
14.
Am J Physiol Renal Physiol ; 317(5): F1375-F1382, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588799

RESUMO

Here, we show that inducible overexpression of Cre recombinase in glomerular podocytes but not in parietal epithelial cells may trigger focal segmental glomerulosclerosis (FSGS) in juvenile transgenic homocygous Pod-rtTA/LC1 mice. Administration of doxycycline shortly after birth, but not at any other time point later in life, resulted in podocyte injury and development of classical FSGS lesions in these mice. Sclerotic lesions were formed as soon as 3 wk of age, and FSGS progressed with low variability until 13 wk of age. In addition, our experiments identified Cre toxicity as a potentially relevant limitation for studies in podocytes of transgenic animals. In summary, our study establishes a novel genetic model for FSGS in mice, which exhibits low variability and manifests already at a young age.


Assuntos
Envelhecimento , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/genética , Integrases/metabolismo , Podócitos/metabolismo , Animais , Antibacterianos/farmacologia , Anticorpos , Doxiciclina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Integrases/genética , Camundongos , Camundongos Transgênicos
15.
JCI Insight ; 4(18)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31534053

RESUMO

The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.


Assuntos
Albuminúria/induzido quimicamente , Nefropatias Diabéticas/patologia , Everolimo/efeitos adversos , Glomerulosclerose Segmentar e Focal/patologia , Serina-Treonina Quinases TOR/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Células Cultivadas , Pré-Escolar , Conjuntos de Dados como Assunto , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/tratamento farmacológico , Células Epiteliais/patologia , Everolimo/administração & dosagem , Feminino , Perfilação da Expressão Gênica , Humanos , Hipertrofia/tratamento farmacológico , Hipertrofia/patologia , Lactente , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Podócitos , Cultura Primária de Células , Regeneração , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estreptozocina/toxicidade , Serina-Treonina Quinases TOR/análise , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Regulação para Cima , Adulto Jovem
16.
Kidney Int ; 96(3): 542-544, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31445579

RESUMO

The study by Kaverina et al. in this issue addresses an important question: can podocytes be replenished by parietal epithelial cells (PECs)? The authors use a complex transgenic mouse model in which podocytes are labeled with GFP and PECs are simultaneously labeled with tdTomato. When Kaverina and colleagues induce focal segmental glomerulosclerosis (FSGS), they find that individual PECs are doubly labeled, coexpress podocyte markers, and form structures similar to foot processes, suggesting that these PECs may have transdifferentiated into podocytes.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Animais , Células Epiteliais , Glomérulos Renais , Camundongos , Regeneração
17.
Nat Commun ; 10(1): 3303, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341160

RESUMO

The mechanisms driving the development of extracapillary lesions in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CGN) remain poorly understood. A key question is how parietal epithelial cells (PECs) invade glomerular capillaries, thereby promoting injury and kidney failure. Here we show that expression of the tetraspanin CD9 increases markedly in PECs in mouse models of CGN and FSGS, and in kidneys from individuals diagnosed with these diseases. Cd9 gene targeting in PECs prevents glomerular damage in CGN and FSGS mouse models. Mechanistically, CD9 deficiency prevents the oriented migration of PECs into the glomerular tuft and their acquisition of CD44 and ß1 integrin expression. These findings highlight a critical role for de novo expression of CD9 as a common pathogenic switch driving the PEC phenotype in CGN and FSGS, while offering a potential therapeutic avenue to treat these conditions.


Assuntos
Nefropatias/patologia , Tetraspanina 29/fisiologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Glomerulonefrite/genética , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 29/genética , Tetraspanina 29/metabolismo
18.
Semin Cell Dev Biol ; 91: 147-152, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31178004

RESUMO

Chronic kidney disease can be understood as a pathological reduction in the number of functional glomeruli. It is a frequent medical problem and one of the major independent risk factors for cardiovascular morbidity and mortality. In humans, glomeruli/nephrons are generated during the prenatal period (glomerular endowment), which may be impaired by multiple conditions. After birth, glomeruli are progressively lost - mostly due to glomerular scarring (focal segmental glomerulosclerosis; FSGS). Multiple independent studies have shown that significant loss of glomerular visceral epithelial cells (podocytes) is sufficient to induce FSGS. It is generally believed that podocytes cannot renew themselves and it has been generally assumed that their number is determined at birth (podocyte endowment). However, there are several lines of experimental evidence showing that podocytes can be replenished in the postnatal period. First, a limited reserve of podocytes has been reported on Bowman's capsule, which may be associated with body growth and increases in glomerular size between childhood and adulthood. Second, two intrinsic progenitor cell niches have been proposed to replenish podocytes throughout adult life and in association with glomerular injury and podocyte loss: parietal epithelial cells and/or cells of the renin lineage. While there is increasing evidence supporting postnatal podocyte gain, controversy remains about the involved signalling pathways and the efficiency of these sources to prevent nephron loss.


Assuntos
Células Epiteliais/citologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Glomérulos Renais/citologia , Néfrons/citologia , Podócitos/citologia , Animais , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Glomérulos Renais/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Nicho de Células-Tronco , Células-Tronco/citologia
19.
Kidney Int ; 96(2): 505-516, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31155155

RESUMO

Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.


Assuntos
Glomerulonefrite/patologia , Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional , Podócitos/fisiologia , Análise de Célula Única/métodos , Animais , Capilares , Modelos Animais de Doenças , Progressão da Doença , Fluorescência , Corantes Fluorescentes/química , Genes Reporter/genética , Glomerulonefrite/imunologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Podócitos/ultraestrutura
20.
Biochim Biophys Acta Mol Cell Res ; 1866(11): 118474, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30954571

RESUMO

Discoidin domain receptor1 (DDR1) is a collagen activated receptor tyrosine kinase and an attractive anti-fibrotic target. Its expression is mainly limited to epithelial cells located in several organs including skin, kidney, liver and lung. DDR1's biology is elusive, with unknown downstream activation pathways; however, it may act as a mediator of the stromal-epithelial interaction, potentially controlling the activation state of the resident quiescent fibroblasts. Increased expression of DDR1 has been documented in several types of cancer and fibrotic conditions including skin hypertrophic scars, idiopathic pulmonary fibrosis, cirrhotic liver and renal fibrosis. The present review article focuses on: a) detailing the evidence for a role of DDR1 as an anti-fibrotic target in different organs, b) clarifying DDR1 tissue distribution in healthy and diseased tissues as well as c) exploring DDR1 protective mode of action based on literature evidence and co-authors experience; d) detailing pharmacological efforts attempted to drug this subtle anti-fibrotic target to date.


Assuntos
Receptor com Domínio Discoidina 1/efeitos dos fármacos , Receptor com Domínio Discoidina 1/metabolismo , Fibrose/metabolismo , Animais , Aterosclerose/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/tratamento farmacológico , Humanos , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Neoplasias/metabolismo , Nefrite Intersticial/patologia , Plasmócitos , Receptores Proteína Tirosina Quinases , Pele/metabolismo , Pele/patologia , Doenças Vasculares/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...