Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4578, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931688

RESUMO

Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.


Assuntos
Neoplasias Ovarianas , Platina , Carcinoma Epitelial do Ovário/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Platina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/farmacologia , Serina/farmacologia
2.
Front Oncol ; 11: 705384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367990

RESUMO

Triple-Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype, characterized by limited treatment options and higher relapse rates than hormone-receptor-positive breast cancers. Chemotherapy remains the mainstay treatment for TNBC, and platinum salts have been explored as a therapeutic alternative in neo-adjuvant and metastatic settings. However, primary and acquired resistance to chemotherapy in general and platinum-based regimens specifically strongly hampers TNBC management. In this study, we used carboplatin-resistant in vivo patient-derived xenograft and isogenic TNBC cell-line models and detected enhanced Wnt/ß-catenin activity correlating with an induced expression of stem cell markers in both resistant models. In accordance, the activation of canonical Wnt signaling in parental TNBC cell lines increases stem cell markers' expression, formation of tumorspheres and promotes carboplatin resistance. Finally, we prove that Wnt signaling inhibition resensitizes resistant models to carboplatin both in vitro and in vivo, suggesting the synergistic use of Wnt inhibitors and carboplatin as a therapeutic option in TNBC. Here we provide evidence for a prominent role of Wnt signaling in mediating resistance to carboplatin, and we establish that combinatorial targeting of Wnt signaling overcomes carboplatin resistance enhancing chemotherapeutic drug efficacy.

3.
Sci Rep ; 11(1): 3176, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542435

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, lacking effective therapy. Many TNBCs show remarkable response to carboplatin-based chemotherapy, but often develop resistance over time. With increasing use of carboplatin in the clinic, there is a pressing need to identify vulnerabilities of carboplatin-resistant tumors. In this study, we generated carboplatin-resistant TNBC MDA-MB-468 cell line and patient derived TNBC xenograft models. Mass spectrometry-based proteome profiling demonstrated that carboplatin resistance in TNBC is linked to drastic metabolism rewiring and upregulation of anti-oxidative response that supports cell replication by maintaining low levels of DNA damage in the presence of carboplatin. Carboplatin-resistant cells also exhibited dysregulation of the mitotic checkpoint. A kinome shRNA screen revealed that carboplatin-resistant cells are vulnerable to the depletion of the mitotic checkpoint regulators, whereas the checkpoint kinases CHEK1 and WEE1 are indispensable for the survival of carboplatin-resistant cells in the presence of carboplatin. We confirmed that pharmacological inhibition of CHEK1 by prexasertib in the presence of carboplatin is well tolerated by mice and suppresses the growth of carboplatin-resistant TNBC xenografts. Thus, abrogation of the mitotic checkpoint by CHEK1 inhibition re-sensitizes carboplatin-resistant TNBCs to carboplatin and represents a potential strategy for the treatment of carboplatin-resistant TNBCs.


Assuntos
Carboplatina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Pirazinas/farmacologia , Pirazóis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Anticancer Res ; 36(10): 5381-5384, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27798902

RESUMO

BACKGROUND/AIM: Human epidermal growth factor receptor 2 (HER2) positivity is associated with a worse prognosis in endometrial cancer (EC). Trastuzumab as a single agent did not demonstrate activity in such cases but there are no reports on its combined use with taxanes. We report the outcome in patients treated simultaneously with trastuzumab and paclitaxel for advanced or recurrent HER2-positive endometrial carcinoma and compared it to their microsatellite instability (MSI) status and PIK3CA mutational profiles. PATIENTS AND METHODS: Patients with advancedor recurrent endometrial carcinoma showing HER2 overexpression (2+ or 3+ immunohistochemical staining) or HER2 amplification (fluorescence in situ hybridization (FISH) HER2/chromosome 17 centromere (CEP 17) ratio >2.0) were treated with trastuzumab (8 mg/kg) and paclitaxel (90 mg/m2) every three weeks. Evaluation of the response was assessed according to the response evaluation criteria in solid tumors (RECIST) guidelines. Endometrial tumors, sampled before the beginning of trastuzumab, were genotyped for PIK3CA hot spot mutations using Sequenom iPLEX Assay technology. RESULTS: Two uterine serous adenocarcinomas and one grade 3 endometrioid adenocarcinoma showing HER2 positivity were treated with trastuzumab and paclitaxel. Between three and seven months of treatment, the three cases showed progressive disease. The genomic analysis of the three cases showed different mutational profiles. One case was found to have MSI and had one PIK3CA mutation. The two others showed no hot spot mutation for PIK3CA. CONCLUSION: Even associated with paclitaxel, HER2-positive endometrial carcinomas poorly responded to trastuzumab. This report underlines the low accuracy of HER2 positivity to predict response of endometrial cancer to combined targeted therapy using trastuzumab and paclitaxel.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Genes erbB-2 , Idoso , Neoplasias do Endométrio/genética , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Paclitaxel/administração & dosagem , Trastuzumab/administração & dosagem
5.
Cell Rep ; 12(6): 992-1005, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26235614

RESUMO

Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth. Second, it is unknown whether PHD2 regulates cancer by affecting cancer-associated fibroblasts (CAFs). We show that PHD2 haplodeficiency reduced metastasis via two mechanisms: (1) by decreasing CAF activation, matrix production, and contraction by CAFs, an effect that surprisingly relied on PHD2 deletion in cancer cells, but not in CAFs; and (2) by improving tumor vessel normalization. Third, the effect of concomitant PHD2 inhibition in malignant and stromal cells (mimicking PHD2 inhibitor treatment) is unknown. We show that global PHD2 haplodeficiency, induced not only before but also after tumor onset, impaired metastasis. These findings warrant investigation of PHD2's therapeutic potential.


Assuntos
Fibroblastos/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos , Metástase Neoplásica , Neoplasias/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cancer Metab ; 2: 19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250177

RESUMO

The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells.

7.
J Cell Sci ; 127(Pt 20): 4331-41, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25179598

RESUMO

Clinically approved therapies that target angiogenesis in tumors and ocular diseases focus on controlling pro-angiogenic growth factors in order to reduce aberrant microvascular growth. Although research on angiogenesis has revealed key mechanisms that regulate tissue vascularization, therapeutic success has been limited owing to insufficient efficacy, refractoriness and tumor resistance. Emerging concepts suggest that, in addition to growth factors, vascular metabolism also regulates angiogenesis and is a viable target for manipulating the microvasculature. Recent studies show that endothelial cells rely on glycolysis for ATP production, and that the key glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) regulates angiogenesis by controlling the balance of tip versus stalk cells. As endothelial cells acquire a tip cell phenotype, they increase glycolytic production of ATP for sprouting. Furthermore, pharmacological blockade of PFKFB3 causes a transient, partial reduction in glycolysis, and reduces pathological angiogenesis with minimal systemic harm. Although further assessment of endothelial cell metabolism is necessary, these results represent a paradigm shift in anti-angiogenic therapy from targeting angiogenic factors to focusing on vascular metabolism, warranting research on the metabolic pathways that govern angiogenesis.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Endotélio Vascular/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica , Trifosfato de Adenosina/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neovascularização Patológica/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores
8.
Cytokine Growth Factor Rev ; 25(4): 473-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25169850

RESUMO

Vascular endothelial growth factor (VEGF) is a key growth factor driving angiogenesis (i.e. the formation of new blood vessels) in health and disease. Pharmacological blockade of VEGF signaling to inhibit tumor angiogenesis is clinically approved but the survival benefit is limited as patients invariably acquire resistance. This is partially mediated by the intrinsic flexibility of tumor cells to adapt to VEGF-blockade. However, it has become clear that tumor stromal cells also contribute to the resistance. Originally, VEGF was thought to specifically target endothelial cells (ECs) but it is now clear that many stromal cells also respond to VEGF signaling, making anti-VEGF therapy more complex than initially anticipated. A more comprehensive understanding of the complex responses of stromal cells to VEGF-blockade might inform the design of improved anti-angiogenic agents.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Células da Medula Óssea/metabolismo , Células Endoteliais/citologia , Fibroblastos/metabolismo , Humanos , Células Mieloides/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Microambiente Tumoral
9.
Cancer Cell ; 26(2): 190-206, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25117709

RESUMO

Chloroquine (CQ) has been evaluated as an autophagy blocker for cancer treatment, but it is unknown if it acts solely by inhibiting cancer cell autophagy. We report that CQ reduced tumor growth but improved the tumor milieu. By normalizing tumor vessel structure and function and increasing perfusion, CQ reduced hypoxia, cancer cell invasion, and metastasis, while improving chemotherapy delivery and response. Inhibiting autophagy in cancer cells or endothelial cells (ECs) failed to induce such effects. CQ's vessel normalization activity relied mainly on alterations of endosomal Notch1 trafficking and signaling in ECs and was abrogated by Notch1 deletion in ECs in vivo. Thus, autophagy-independent vessel normalization by CQ restrains tumor invasion and metastasis while improving chemotherapy, supporting the use of CQ for anticancer treatment.


Assuntos
Inibidores da Angiogênese/farmacologia , Autofagia , Cloroquina/farmacologia , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Neoplasias Cutâneas/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Animais , Proteína 5 Relacionada à Autofagia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/uso terapêutico , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Invasividade Neoplásica , Neovascularização Patológica/metabolismo , Receptor Notch1/metabolismo , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...