Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675937

RESUMO

Antibodies that specifically bind to individual human fragment crystallizable γ receptors (FcγRs) are of interest as research tools in studying immune cell functions, as well as components in bispecific antibodies for immune cell engagement in cancer therapy. Monoclonal antibodies for human low-affinity FcγRs have been successfully generated by hybridoma technology and are widely used in pre-clinical research. However, the generation of monoclonal antibodies by hybridoma technology that specifically bind to the high-affinity receptor FcγRI is challenging. Monomeric mouse IgG2a, IgG2b, and IgG3 bind human FcγRI with high affinity via the Fc part, leading to an Fc-mediated rather than a fragment for antigen binding (Fab)-mediated selection of monoclonal antibodies. Blocking the Fc-binding site of FcγRI with an excess of human IgG or Fc during screening decreases the risk of Fc-mediated interactions but can also block the potential epitopes of new antibody candidates. Therefore, we replaced hybridoma technology with phage display of a single-chain fragment variable (scFv) antibody library that was generated from mice immunized with FcγRI-positive cells and screened it with a cellular panning approach assisted by next-generation sequencing (NGS). Seven new FcγRI-specific antibody sequences were selected with this methodology, which were produced as Fc-silent antibodies showing FcγRI-restricted specificity.


Assuntos
Anticorpos Monoclonais , Receptores de IgG , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Animais , Camundongos , Humanos , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Imunização , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Hibridomas , Especificidade de Anticorpos , Feminino , Camundongos Endogâmicos BALB C
2.
J Immunol ; 210(4): 389-397, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36637221

RESUMO

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human granulocytes and monocytes that dampens antimicrobial functions. We previously showed that sputum neutrophils from infants with severe respiratory syncytial virus (RSV) bronchiolitis have decreased SIRL-1 surface expression compared with blood neutrophils and that SIRL-1 surface expression is rapidly lost from in vitro activated neutrophils. This led us to hypothesize that activated neutrophils lose SIRL-1 by ectodomain shedding. Here, we developed an ELISA and measured the concentration of soluble SIRL-1 (sSIRL-1) in patients with RSV bronchiolitis and hospitalized patients with COVID-19, which are both characterized by neutrophilic inflammation. In line with our hypothesis, sSIRL-1 concentration was increased in sputum compared with plasma of patients with RSV bronchiolitis and in serum of hospitalized patients with COVID-19 compared with control serum. In addition, we show that in vitro activated neutrophils release sSIRL-1 by proteolytic cleavage and that this diminishes the ability to inhibit neutrophilic reactive oxygen species production via SIRL-1. Finally, we found that SIRL-1 shedding is prevented by proteinase 3 inhibition and by extracellular adherence protein from Staphylococcus aureus. Notably, we recently showed that SIRL-1 is activated by PSMα3 from S. aureus, suggesting that S. aureus may counteract SIRL-1 shedding to benefit from preserved inhibitory function of SIRL-1. In conclusion, we report that SIRL-1 is released from activated neutrophils by proteinase 3 cleavage and that endogenous sSIRL-1 protein is present in vivo.


Assuntos
Bronquiolite , COVID-19 , Infecções por Vírus Respiratório Sincicial , Humanos , Lactente , Bronquiolite/metabolismo , COVID-19/metabolismo , Mieloblastina , Neutrófilos , Receptores Imunológicos , Staphylococcus aureus , Leucócitos/metabolismo
3.
MAbs ; 12(1): 1795505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32744145

RESUMO

Current combination therapies elicit high response rates in B cell malignancies, often using CD20 antibodies as the backbone of therapy. However, many patients eventually relapse or develop progressive disease. Therefore, novel CD20 antibodies combining multiple effector mechanisms were generated. To study whether neutrophil-mediated destruction of B cell malignancies can be added to the arsenal of effector mechanisms, we chimerized a panel of five previously described murine CD20 antibodies to the human IgG1, IgA1 and IgA2 isotype. Of this panel, we assessed in vitro antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and direct cell death induction capacity and studied the efficacy in two different in vivo mouse models. IgA antibodies outperformed IgG1 antibodies in neutrophil-mediated killing in vitro, both against CD20-expressing cell lines and primary patient material. In these assays, we observed loss of CD19 with both IgA and IgG antibodies. Therefore, we established a novel method to improve the assessment of B-cell depletion by CD20 antibodies by including CD24 as a stable cell marker. Subsequently, we demonstrated that only IgA antibodies were able to reduce B cell numbers in this context. Additionally, IgA antibodies showed efficacy in both an intraperitoneal tumor model with EL4 cells expressing huCD20 and in an adoptive transfer model with huCD20-expressing B cells. Taken together, we show that IgA, like IgG, can induce ADCC and CDC, but additionally triggers neutrophils to kill (malignant) B cells. We conclude that antibodies of the IgA isotype offer an attractive repertoire of effector mechanisms for the treatment of CD20-expressing malignancies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20/imunologia , Linfócitos B/imunologia , Neoplasias Hematológicas/imunologia , Imunoglobulina A/farmacologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/imunologia , Animais , Linfócitos B/patologia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Humanos , Imunoglobulina A/imunologia , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neutrófilos/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Br J Haematol ; 180(6): 808-820, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29468712

RESUMO

Based on their mechanisms-of-action, CD20 monoclonal antibodies (mAbs) are grouped into Type I [complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC)] and Type II [programmed cell death (PCD) and ADCC] mAbs. We generated 17 new hybridomas producing CD20 mAbs of different isotypes and determined unique heavy and light chain sequence pairs for 13 of them. We studied their epitope binding, binding kinetics and structural properties and investigated their predictive value for effector functions, i.e. PCD, CDC and ADCC. Peptide mapping and CD20 mutant screens revealed that 10 out of these 11 new mAbs have an overlapping epitope with the prototypic Type I mAb rituximab, albeit that distinct amino acids of the CD20 molecule contributed differently. Binding kinetics did not correlate with the striking differences in CDC activity among the mIgG2c mAbs. Interestingly, chimerization of mAb m1 resulted in a mAb displaying both Type I and II characteristics. PCD induction was lost upon introduction of a mutation in the framework of the heavy chain affecting the elbow angle, supporting that structural changes within this region can affect functional activities of CD20 mAbs. Together, these new CD20 mAbs provide further insights in the properties dictating the functional efficacy of CD20 mAbs.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD20/imunologia , Proteínas do Sistema Complemento/imunologia , Epitopos/imunologia , Anticorpos Monoclonais Murinos/genética , Citotoxicidade Celular Dependente de Anticorpos/genética , Linhagem Celular , Mapeamento de Epitopos , Epitopos/genética , Humanos
5.
Blood ; 120(3): e9-e16, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22653974

RESUMO

Interactions within the hematopoietic niche in the BM microenvironment are essential for maintenance of the stem cell pool. In addition, this niche is thought to serve as a sanctuary site for malignant progenitors during chemotherapy. Therapy resistance induced by interactions with the BM microenvironment is a major drawback in the treatment of hematologic malignancies and bone-metastasizing solid tumors. To date, studying these interactions was hampered by the lack of adequate in vivo models that simulate the human situation. In the present study, we describe a unique human-mouse hybrid model that allows engraftment and outgrowth of normal and malignant hematopoietic progenitors by implementing a technology for generating a human bone environment. Using luciferase gene marking of patient-derived multiple myeloma cells and bioluminescent imaging, we were able to follow pMM cells outgrowth and to visualize the effect of treatment. Therapeutic interventions in this model resulted in equivalent drug responses as observed in the corresponding patients. This novel human-mouse hybrid model creates unprecedented opportunities to investigate species-specific microenvironmental influences on normal and malignant hematopoietic development, and to develop and personalize cancer treatment strategies.


Assuntos
Células-Tronco Hematopoéticas/citologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Nicho de Células-Tronco/imunologia , Quimeras de Transplante/imunologia , Microambiente Tumoral/imunologia , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Ossículos da Orelha/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Camundongos , Camundongos Mutantes , Transplante de Neoplasias , Osteólise/imunologia , Alicerces Teciduais , Transplante Heterólogo
6.
Cancer Cell ; 20(3): 370-83, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21907927

RESUMO

The development of resistance to chemotherapy is a major obstacle for lasting effective treatment of cancer. Here, we demonstrate that endogenous mesenchymal stem cells (MSCs) become activated during treatment with platinum analogs and secrete factors that protect tumor cells against a range of chemotherapeutics. Through a metabolomics approach, we identified two distinct platinum-induced polyunsaturated fatty acids (PIFAs), 12-oxo-5,8,10-heptadecatrienoic acid (KHT) and hexadeca-4,7,10,13-tetraenoic acid (16:4(n-3)), that in minute quantities induce resistance to a broad spectrum of chemotherapeutic agents. Interestingly, blocking central enzymes involved in the production of these PIFAs (cyclooxygenase-1 and thromboxane synthase) prevents MSC-induced resistance. Our findings show that MSCs are potent mediators of resistance to chemotherapy and reveal targets to enhance chemotherapy efficacy in patients.


Assuntos
Antineoplásicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Compostos de Platina/farmacologia , Tromboxano-A Sintase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Inibidores de Ciclo-Oxigenase , Humanos , Espectrometria de Massas , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Tromboxano-A Sintase/antagonistas & inibidores , Células Tumorais Cultivadas
7.
Haematologica ; 95(12): 2063-71, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20851867

RESUMO

BACKGROUND: Incorporation of the chimeric CD20 monoclonal antibody rituximab in the treatment schedule of patients with non-Hodgkin's lymphoma has significantly improved outcome. Despite this success, about half of the patients do not respond to treatment or suffer from a relapse and additional therapy is required. A low CD20-expression level may in part be responsible for resistance against rituximab. We therefore investigated whether the CD20-expression level related resistance to rituximab could be overcome by a new group of CD20 mAbs (HuMab-7D8 and ofatumumab) targeting a unique membrane-proximal epitope on the CD20 molecule. DESIGN AND METHODS: By retroviral transduction of the CD20 gene into CD20-negative cells and clonal selection of transduced cells a system was developed in which the CD20-expression level is the only variable. These CD20 transduced cells were used to study the impact of rituximab and HuMab-7D8 mediated complement-dependent cytotoxicity. To study the in vivo efficacy of these mAbs an in vivo imaging system was generated by retroviral expression of the luciferase gene in the CD20-positive cells. RESULTS: We show that HuMab-7D8 efficiently killed CD20(low) cells that are not susceptible to rituximab-induced killing in vitro. In a mouse xenograft model, we observed a comparable increase in survival time between HuMab-7D8 and rituximab-treated mice. Most significantly, however, HuMab-7D8 eradicated all CD20-expressing cells both in the periphery as well as in the bone marrow whereas after rituximab treatment CD20(low) cells survived. CONCLUSIONS: Cells that are insensitive to in vitro and in vivo killing by rituximab as the result of their low CD20-expression profile may be efficiently killed by an antibody against the membrane-proximal epitope on CD20. Such antibodies should, therefore, be explored to overcome rituximab resistance in the clinic.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Monoclonais/farmacologia , Antígenos CD20/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Murinos/imunologia , Antígenos CD20/genética , Antígenos CD20/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Epitopos/imunologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/metabolismo , Leucemia Experimental/patologia , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Microdomínios da Membrana/metabolismo , Camundongos , Transporte Proteico , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cell ; 111(2): 241-50, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12408868

RESUMO

The transactivation of TCF target genes induced by Wnt pathway mutations constitutes the primary transforming event in colorectal cancer (CRC). We show that disruption of beta-catenin/TCF-4 activity in CRC cells induces a rapid G1 arrest and blocks a genetic program that is physiologically active in the proliferative compartment of colon crypts. Coincidently, an intestinal differentiation program is induced. The TCF-4 target gene c-MYC plays a central role in this switch by direct repression of the p21(CIP1/WAF1) promoter. Following disruption of beta-catenin/TCF-4 activity, the decreased expression of c-MYC releases p21(CIP1/WAF1) transcription, which in turn mediates G1 arrest and differentiation. Thus, the beta-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.


Assuntos
Neoplasias Colorretais/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Transativadores/genética , Fatores de Transcrição/genética , Ciclo Celular , Diferenciação Celular , Divisão Celular , Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição TCF , Proteína 2 Semelhante ao Fator 7 de Transcrição , Células Tumorais Cultivadas , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...