Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 146(8): 3192-3205, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082959

RESUMO

Amyloid-ß (Aß) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe. However, there is evidence that, independently of Aß, age-related tau pathology might be present outside of the medial temporal lobe. We therefore aimed to study age-related Aß-independent tau deposition outside the medial temporal lobe in two large cohorts and to investigate potential downstream effects of this on cognition and structural measures. We included 545 cognitively unimpaired adults (40-92 years) from the BioFINDER-2 study (in vivo) and 639 (64-108 years) from the Rush Alzheimer's Disease Center cohorts (ex vivo). 18F-RO948- and 18F-flutemetamol-PET standardized uptake value ratios were calculated for regional tau and global/regional Aß in vivo. Immunohistochemistry was used to estimate Aß load and tangle density ex vivo. In vivo medial temporal lobe volumes (subiculum, cornu ammonis 1) and cortical thickness (entorhinal cortex, Brodmann area 35) were obtained using Automated Segmentation for Hippocampal Subfields packages. Thickness of early and late neocortical Alzheimer's disease regions was determined using FreeSurfer. Global cognition and episodic memory were estimated to quantify cognitive functioning. In vivo age-related tau deposition was observed in the medial temporal lobe and in frontal and parietal cortical regions, which was statistically significant when adjusting for Aß. This was also observed in individuals with low Aß load. Tau deposition was negatively associated with cortical volumes and thickness in temporal and parietal regions independently of Aß. The associations between age and cortical volume or thickness were partially mediated via tau in regions with early Alzheimer's disease pathology, i.e. early tau and/or Aß pathology (subiculum/Brodmann area 35/precuneus/posterior cingulate). Finally, the associations between age and cognition were partially mediated via tau in Brodmann area 35, even when including Aß-PET as covariate. Results were validated in the ex vivo cohort showing age-related and Aß-independent increases in tau aggregates in and outside the medial temporal lobe. Ex vivo age-cognition associations were mediated by medial and inferior temporal tau tangle density, while correcting for Aß density. Taken together, our study provides support for primary age-related tauopathy even outside the medial temporal lobe in vivo and ex vivo, with downstream effects on structure and cognition. These results have implications for our understanding of the spreading of tau outside the medial temporal lobe, also in the context of Alzheimer's disease. Moreover, this study suggests the potential utility of tau-targeting treatments in primary age-related tauopathy, likely already in preclinical stages in individuals with low Aß pathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Tauopatias , Adulto , Humanos , Doença de Alzheimer/patologia , Proteínas tau , Disfunção Cognitiva/patologia , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética
2.
Eur J Nucl Med Mol Imaging ; 50(5): 1371-1383, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36513817

RESUMO

PURPOSE: To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. METHODS: A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aß-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. RESULTS: [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aß-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. CONCLUSION: [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations.


Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Proteína C9orf72/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons , Mutação , Atrofia
3.
Chem Sci ; 13(19): 5539-5545, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694350

RESUMO

Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.

4.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32902974

RESUMO

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Microglia/metabolismo , Receptor CB2 de Canabinoide/análise , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Sondas Moleculares/química , Imagem Óptica , Sensibilidade e Especificidade , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...