Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14012, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640734

RESUMO

Can brucellosis-related biochemical and immunological parameters be used as diagnostic and treatment indicators? The goal of this project was to look at biochemical parameters, trace elements, and inflammatory factors in the acute and chronic stages of brucellosis after treatment with streptomycin and hydroxychloroquine-loaded solid lipid nanoparticles (STR-HCQ-SLN). The double emulsion method was used for the synthesis of nanoparticles. Serum levels of trace elements, vitamin D, CRP, and biochemical parameters were measured in rats involved in brucellosis. The therapeutic effect of STR-HCQ-SLN was compared with that of free drugs. In both healthy and infected rats, serum concentrations of copper, zinc, iron, magnesium, potassium, and biochemical parameters of the liver were significantly different. By altering the serum levels of the aforementioned factors, treatment with STR-HCQ-SLN had a positive therapeutic effect on chronic brucellosis. Vitamin D levels declined (46.4%) and CRP levels rose (from 7.5 mg to less than 1 mg) throughout the acute and chronic stages of brucellosis. This study showed that by comparing the biochemical parameters and the levels of trace elements in the serum of healthy and diseased mice in the acute and chronic stages of brucellosis, it is possible to get help from other routine methods for diagnosis.


Assuntos
Brucelose , Nanopartículas , Oligoelementos , Animais , Camundongos , Ratos , Estreptomicina , Hidroxicloroquina/uso terapêutico , Brucelose/tratamento farmacológico , Animais de Laboratório , Vitaminas , Vitamina D
2.
Biomed Pharmacother ; 158: 114116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527846

RESUMO

Brucellosis is considered one of the most important infectious diseases affecting any tissue and organ in the human body. Due to the intracellular pathogenesis of Brucella species, the use of conventional antibiotics for managing chronic brucellosis has several limitations. Therefore, the study focused on the use of solid lipid nanoparticles (SLN) to deliver streptomycin (STR) for intracellular infection, with or without the combination of hydroxychloroquine (HCQ) to evaluate if there might be a boost in the antibiotic effect when using the STR or STR-NPs alone. We used the double emulsion technique to synthesize Nano drug carriers; afterward, the physicochemical characteristics of synthesized Nano drug carriers were determined. The in vitro antibacterial activity of free drugs and Nano drug carriers were evaluated using well diffusion, broth microdilution assays (BMD), and murine macrophage-like cells cell line J774A.1. Additionally, acute and chronic phases of brucellosis were inducted into Wistar rats, and healing capacity of Nano drug carriers on liver and spleen tissues was compared with free drugs. The zeta potential of nanoparticles, means of size, Polydispersity Index (PDI), drugs loading, and encapsulation efficiency were 15.2 mV, 312.5 ± 26 nm, 0.433 ± 0.09, 16.6% and 89.5%, respectively. Well diffusion and BMD methods did not show a significantly differ between free drugs and nano drug carriers. However, the Nano drug carriers remarkably decreased the number of bacteria in the cell line compared to the free drugs. STR/HCQ-SLN enhanced the healing processes of the liver and spleen after brucellosis induction. STR/HCQ-SLN showed better inhibitory effects against the chronic phase of B. abortus infection in comparison to the STR-SLN, but this difference was not statistically significant. Using nanoplatforms to enhance conventional anti-brucellosis agents is promising, green and safe. Due to the continuous release of drugs, drugs increase their accumulation at the site of infection, causing a more significant effect on the chronic and acute phases of brucellosis.


Assuntos
Brucelose , Nanopartículas , Pontos Quânticos , Ratos , Camundongos , Humanos , Animais , Brucella abortus , Estreptomicina/farmacologia , Estreptomicina/uso terapêutico , Hidroxicloroquina/farmacologia , Ratos Wistar , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Brucelose/patologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Portadores de Fármacos/uso terapêutico
3.
Biomed Pharmacother ; 146: 112609, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062073

RESUMO

The present work aimed to review the potential mechanisms used by macrophages to kill intracellular bacteria, their entrance to the cell, and mechanisms of escape of cellular immunity and applications of various nanoparticles. Since intracellular bacteria such as Mycobacterium and Brucella can survive in host cells and can resist the lethal power of macrophages, they can cause chronic disease or recur in 10-30% of cases in improved patients Nano drug-based therapeutics are promising tools for treating intracellular bacteria and preventing recurrence of the disease caused by these bacteria. In addition, among their unique features, we can mention the small size and the ability of these compounds to purposefully reach the target location.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Nanopartículas/administração & dosagem , Humanos , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA