Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 40(30): 5847-5856, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32554550

RESUMO

The M-current is a low voltage-activated potassium current generated by neuronal Kv7 channels. A prominent role of the M-current is to a create transient increase of neuronal excitability in response to neurotransmitters through the suppression of this current. Accordingly, M-current suppression is assumed to be involved in higher brain functions including learning and memory. However, there is little evidence supporting such a role to date. To address this gap, we examined behavioral tasks to assess learning and memory in homozygous Kv7.2 knock-in mice, Kv7.2(S559A), which show reduced M-current suppression while maintaining a normal basal M-current activity in neurons. We found that Kv7.2(S559A) mice had normal object location memory and contextual fear memory, but impaired long-term object recognition memory. Furthermore, short-term memory for object recognition was intact in Kv7.2(S559A) mice. The deficit in long-term object recognition memory was restored by the administration of a selective Kv7 channel inhibitor, XE991, when delivered during the memory consolidation phase. Lastly, c-Fos induction 2 h after training in Kv7.2(S559A) mice was normal in the hippocampus, which corresponds to intact object location memory, but was reduced in the perirhinal cortex, which corresponds to impaired long-term object recognition memory. Together, these results support the overall conclusion that M-current suppression is important for memory consolidation of specific types of memories.SIGNIFICANCE STATEMENT Dynamic regulation of neuronal excitation is a fundamental mechanism for information processing in the brain, which is mediated by changes in synaptic transmissions or by changes in ion channel activity. Some neurotransmitters can facilitate action potential firing by suppression of a low voltage-activated potassium current, M-current. We demonstrate that M-current suppression is critical for establishment of long-term object recognition memory, but is not required for establishment of hippocampus-dependent location memory or contextual memory. This study suggests that M-current suppression is important for stable encoding of specific types of memories.


Assuntos
Canal de Potássio KCNQ2/fisiologia , Consolidação da Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Olfato/fisiologia , Sequência de Aminoácidos , Animais , Medo/fisiologia , Medo/psicologia , Feminino , Masculino , Consolidação da Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Odorantes , Reconhecimento Psicológico/efeitos dos fármacos , Olfato/efeitos dos fármacos
2.
Nutr Neurosci ; 17(1): 16-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23485514

RESUMO

OBJECTIVES: Multiple sclerosis is a neurodegenerative and demyelinating disease of central nervous system. High levels of oxidative stress are associated with inflammation and play an important role in pathogenesis of multiple sclerosis. This double-blind, randomized controlled clinical study was carried out to determine the effect of daily consumption of lipoic acid on oxidative stress among multiple sclerosis patients. METHODS: A total of 52 relapsing-remitting multiple sclerosis patients, aged 18-50 years with Expanded Disability Status Scale ≤5.5 were assigned to consume either lipoic acid (1200 mg/day) or placebo capsules for 12 weeks. Fasting blood samples were collected before the first dose taken and 12 hours after the last. Dietary intakes were obtained by using 3-day dietary records. RESULTS: Consumption of lipoic acid resulted in a significant improvement of total antioxidant capacity (TAC) in comparison to the placebo group (P = 0.004). Although a significant change of TAC (-1511 mmol/L, P = 0.001) was found within lipoic acid group, other markers of oxidative stress including superoxide dismutase activity, glutathione peroxidase activity, and malondialdehyde levels were not affected by lipoic acid consumption. DISCUSSION: These results suggest that 1200 mg of lipoic acid improves serum TAC among multiple sclerosis patients but does not affect other markers of oxidative stress.


Assuntos
Antioxidantes/administração & dosagem , Esclerose Múltipla/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ácido Tióctico/administração & dosagem , Adolescente , Adulto , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Glutationa Peroxidase/sangue , Humanos , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Superóxido Dismutase/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...