Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4243, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534140

RESUMO

Defect-free monolayers of graphene and hexagonal boron nitride are surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we use suspended monolayers that have few, if any, atomic-scale defects, as shown by gas permeation tests, and place them to separate reservoirs filled with hydrochloric acid solutions. Protons account for all the electrical current and chloride ions are blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides the importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials.

2.
Nat Nanotechnol ; 14(10): 962-966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31477802

RESUMO

Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas' crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA