Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheum ; 56(3): 799-808, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17328054

RESUMO

OBJECTIVE: Neutrophils and tumor necrosis factor (TNF) play important roles in the pathogenesis of rheumatoid arthritis (RA). Modulation of TNF receptors (TNFRs) may contribute to the regulation of tissue damage, and n-6 polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) can increase the expression of TNFRI and TNFRII on neutrophils. Because the n-3 PUFAs are antiinflammatory in RA, we examined whether, as a novel mechanism of action, n-3 PUFAs can antagonize the AA-induced increase in TNFR expression. METHODS: Human neutrophils were treated with PUFAs and examined for changes in surface expression of TNFRs by flow cytometry. Translocation of protein kinase C (PKC) and activation of ERK-1/2 MAPK were determined by Western blotting. Intracellular calcium mobilization was measured in Fura 2-loaded cells by luminescence spectrometry. RESULTS: Pretreatment of neutrophils with nanomolar levels of n-3 PUFAs, eicosapentaenoic acid, or docosahexaenoic acid led to a marked inhibition of the AA-induced up-regulation of TNFRs I and II. Such pretreatment, however, did not prevent AA from stimulating the activities of PKC and ERK-1/2, which is required for the actions of AA or its ability to mobilize Ca(2+). Nevertheless, treatment with n-3 PUFAs caused the stimulation of serine proteases that could cleave the TNFRs. CONCLUSION: These findings suggest a mechanism by which the n-3 PUFAs inhibit the inflammatory response in RA, by regulating the ability of AA to increase TNFR expression. These results help fill the gaps in our knowledge regarding the mechanisms of action of n-3 PUFAs, thus allowing us to make specific recommendations for the use of n-3 PUFAs in the regulation of inflammatory diseases.


Assuntos
Ácido Araquidônico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Neutrófilos/metabolismo , Peptídeo Hidrolases/fisiologia , Receptores do Fator de Necrose Tumoral/metabolismo , Cálcio/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Relação Dose-Resposta a Droga , Ácido Eicosapentaenoico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neutrófilos/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Regulação para Cima/efeitos dos fármacos
2.
J Immunol ; 171(5): 2616-24, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12928414

RESUMO

Arachidonic acid (AA) regulates the function of many cell types, including neutrophils. Although much emphasis has been placed on agonist-induced down-regulation of TNFR, our data show that AA caused a rapid (10-20 min) and dose-dependent (0.5-30 micro M) increase in the surface expression of both classes of TNFR (TNFR1 and TNFR2) on human neutrophils. This increased TNFR expression correlated with an increase in TNF-induced superoxide production. In contrast, the omega3 fatty acids eicosapentaenoic acid, docosahexaenoic acid, and linolenic acid failed to stimulate TNFR expression. Although fMLP and LPS reduced the neutrophil expression of TNFR, when pretreated with AA, fMLP caused an increase in TNFR expression. Consistent with this result was the finding that AA prevented the fMLP-induced receptor release in neutrophil cultures. AA also caused an increase in TNFR expression in matured HL-60 cells (neutrophil-like cells), but a decrease in nonmatured cells and HUVEC. The AA effects were independent of the lipoxygenase and cyclooxygenase pathways, but dependent on protein kinase C, the extracellular signal-regulated kinases 1 and 2, and cytosolic phospholipase A(2). The data demonstrate a unique effect of AA in the inflammatory reaction, through its action on neutrophil TNFR expression, and suggest that AA may regulate the response of neutrophils to TNF by altering its receptor number.


Assuntos
Ácido Araquidônico/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fosfolipases A/fisiologia , Proteína Quinase C/fisiologia , Receptores do Fator de Necrose Tumoral/biossíntese , Regulação para Cima/imunologia , Ácido Araquidônico/farmacologia , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Ácidos Graxos Insaturados/farmacologia , Células HL-60 , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Isoenzimas/fisiologia , Leucotrienos/farmacologia , Peróxidos Lipídicos/farmacologia , Lipopolissacarídeos/farmacologia , Lipoxigenase/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Ativação de Neutrófilo/genética , Ativação de Neutrófilo/imunologia , Neutrófilos/enzimologia , Fosfolipases A2 , Prostaglandina-Endoperóxido Sintases/fisiologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...