Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Thorac Oncol ; 18(4): 499-515, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36535627

RESUMO

INTRODUCTION: Targeted therapies require life-long treatment, as drug discontinuation invariably leads to tumor recurrence. Recurrence is mainly driven by minor subpopulations of drug-tolerant persister (DTP) cells that survive the cytotoxic drug effect. In lung cancer, DTP studies have mainly been conducted with cell line models. METHODS: We conducted an in vivo DTP study using a lung adenocarcinoma patient-derived xenograft tumor driven by an EGFR mutation. Daily treatment of tumor-bearing mice for 5 to 6 weeks with the EGFR inhibitor erlotinib markedly shrunk tumors and generated DTPs, which were analyzed by whole exome, bulk population transcriptome, and single-cell RNA sequencing. RESULTS: The DTP tumors maintained the genomic clonal architecture of untreated baseline (BL) tumors but had reduced proliferation. Single-cell RNA sequencing identified a rare (approximately 4%) subpopulation of BL cells (DTP-like) with transcriptomic similarity to DTP cells and intermediate activity of pathways that are up-regulated in DTPs. Furthermore, the predominant transforming growth factor-ß activated cancer-associated fibroblast (CAF) population in BL tumors was replaced by a CAF population enriched for IL6 production. In vitro experiments indicate that these populations interconvert depending on the levels of transforming growth factor-ß versus NF-κB signaling, which is modulated by tyrosine kinase inhibitor presence. The DTPs had signs of increased NF-κB and STAT3 signaling, which may promote their survival. CONCLUSIONS: The DTPs may arise from a specific preexisting subpopulation of cancer cells with partial activation of specific drug resistance pathways. Tyrosine kinase inhibitor treatment induces DTPs revealing greater activation of these pathways while converting the major preexisting CAF population into a new state that may further promote DTP survival.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transcriptoma , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Xenoenxertos , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Análise de Célula Única , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/farmacologia , Fatores de Crescimento Transformadores/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação
2.
Cancer Med ; 12(5): 5688-5702, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36305267

RESUMO

BACKGROUND: Lung squamous cell carcinoma (LUSC) currently has limited therapeutic options because of the relatively few validated targets and the lack of clinical drugs for some of these targets. Although NRF2/NFE2L2 pathway activation commonly occurs in LUSC, NRF2 has predominantly been studied in other cancer models. Here, we investigated the function of NRF2 in LUSC, including in organoid models, and we explored the activity of a small molecule NRF2 inhibitor ML385, which has not previously been investigated in LUSC. METHODS: We first explored the role of NRF2 signaling in LUSC cancer cell line and organoid proliferation through NRF2 knockdown or ML385 treatment, both in vivo and in vitro. Next, we performed Western blot and immunofluorescence assays to determine the effect of NRF2 inhibition on PI3K-mTOR signaling. Finally, we used cell viability and clonogenic assays to explore whether ML385 could sensitize LUSC cancer cells to PI3K inhibitors. RESULTS: We find that downregulation of NRF2 signaling inhibited proliferation of LUSC cancer cell lines and organoids, both in vivo and in vitro. We also demonstrate that inhibition of NRF2 reduces PI3K-mTOR signaling, with two potential mechanisms being involved. Although NRF2 promotes AKT phosphorylation, it also acts downstream of AKT to increase RagD protein expression and recruitment of mTOR to lysosomes after amino acid stimulation. We also find that ML385 potentiates LUSC growth inhibition by a pan-PI3K inhibitor, which correlates with stronger inhibition of PI3K-mTOR signaling. CONCLUSIONS: Our data provide additional support for NRF2 promoting LUSC growth through PI3K-mTOR activation and support development of NRF2 inhibitors for the treatment of LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias Pulmonares/patologia , Pulmão/patologia
3.
Nat Commun ; 13(1): 1811, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383171

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. Only a fraction of NSCLC harbor actionable driver mutations and there is an urgent need for patient-derived model systems that will enable the development of new targeted therapies. NSCLC and other cancers display profound proteome remodeling compared to normal tissue that is not predicted by DNA or RNA analyses. Here, we generate 137 NSCLC patient-derived xenografts (PDXs) that recapitulate the histology and molecular features of primary NSCLC. Proteome analysis of the PDX models reveals 3 adenocarcinoma and 2 squamous cell carcinoma proteotypes that are associated with different patient outcomes, protein-phosphotyrosine profiles, signatures of activated pathways and candidate targets, and in adenocarcinoma, stromal immune features. These findings portend proteome-based NSCLC classification and treatment and support the PDX resource as a viable model for the development of new targeted therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Thorac Oncol ; 17(2): 277-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648945

RESUMO

INTRODUCTION: Mutations in BRAF occur in 2% to 4% of patients with lung adenocarcinoma. Combination dabrafenib and trametinib, or single-agent vemurafenib is approved only for patients with cancers driven by the V600E BRAF mutation. Targeted therapy is not currently available for patients harboring non-V600 BRAF mutations. METHODS: A lung adenocarcinoma patient-derived xenograft model (PHLC12) with wild-type and nonamplified EGFR was tested for response to EGFR tyrosine kinase inhibitors (TKIs). A cell line derived from this model (X12CL) was also used to evaluate drug sensitivity and to identify potential drivers by small interfering RNA knockdown. Kinase assays were used to test direct targeting of the candidate driver by the EGFR TKIs. Structural modeling including, molecular dynamics simulations, and binding assays were conducted to explore the mechanism of off-target inhibition by EGFR TKIs on the model 12 driver. RESULTS: Both patient-derived xenograft PHLC12 and the X12CL cell line were sensitive to multiple EGFR TKIs. The BRAFG469V mutation was found to be the only known oncogenic mutation in this model. Small interfering RNA knockdown of BRAF, but not the EGFR, killed X12CL, confirming BRAFG469V as the oncogenic driver. Kinase activity of the BRAF protein isolated from X12CL was inhibited by treatment with the EGFR TKIs gefitinib and osimertinib, and expression of BRAFG469V in non-EGFR-expressing NR6 cells promoted growth in low serum condition, which was also sensitive to EGFR TKIs. Structural modeling, molecular dynamic simulations, and in vitro binding assays support BRAFG469V being a direct target of the TKIs. CONCLUSIONS: Clinically approved EGFR TKIs can be repurposed to treat patients with non-small cell lung cancer harboring the BRAFG469V mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
5.
Transl Oncol ; 14(10): 101179, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284202

RESUMO

Gain-of-function Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations occur in 25% of lung adenocarcinomas, and these tumors are challenging to treat. Some preclinical work, largely based on cell lines, suggested KRASmut lung cancers are especially dependent on the nuclear export protein exportin-1 (XPO1), while other work supports XPO1 being a broader cancer dependency. To investigate the sensitivity of KRASmut lung cancers to XPO1 inhibition in models that more closely match clinical tumors, we treated 10 independently established lung cancer patient-derived tumor xenografts (PDXs) with the clinical XPO1 inhibitor, Selinexor. Monotherapy with Selinexor reduced tumor growth in all KRASmut PDXs, which included 4 different codon mutations, and was more effective than the clinical MEK1/2 inhibitor, Trametinib. Selinexor was equally effective in KRASG12C and KRASG12D tumors, with TP53 mutations being a biomarker for a weaker drug response. By mining genome-wide dropout datasets, we identified XPO1 as a universal cancer cell dependency and confirmed this functionally in two KRASWT PDX models harboring kinase drivers. However, targeted kinase inhibitors were more effective than Selinexor in these models. Our findings support continued investigation of XPO1 inhibitors in KRASmut lung adenocarcinoma, regardless of the codon alteration.

6.
Lung Cancer ; 146: 78-85, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521388

RESUMO

BACKGROUND: Anaplastic lymphoma kinase (ALK) targeted therapies have demonstrated remarkable efficacy in ALK-positive lung adenocarcinomas. However, patients inevitably develop resistance to such therapies. To investigate novel mechanisms of resistance to second generation ALK inhibitors, we characterized and modeled ALK inhibitor resistance of ALK-positive patient-derived xenograft (PDX) models established from advanced-stage lung adenocarcinoma patients who have progressed on one or more ALK inhibitors. METHODS: Whole exome sequencing was performed to identify resistance mechanisms to ALK inhibitors in PDXs generated from biopsies at the time of relapse. ALK fusion status was confirmed using fluorescent in situ hybridization, immunohistochemistry, RNA-sequencing, RT-qPCR and western blot. Targeted therapies to overcome acquired resistance were then tested on the PDX models. RESULTS: Three PDX models were successfully established from biopsies of two patients who had progressed on crizotinib and/or alectinib. The PDX models recapitulated the histology and ALK status of their patient tumors, as well as their matched patients' clinical treatment outcome to ALK inhibitors. Whole exome sequencing identified MET amplification and previously unreported BRAF V600E mutation as independent mechanisms of resistance to alectinib. Importantly, PDX treatment of inhibitors specific for these targets combined with ALK inhibitor overcame resistance. CONCLUSIONS: Bypass signaling pathway through c-MET and BRAF are independent mechanisms of resistance to alectinib. Individualized intervention against these resistance pathways could be viable therapeutic options in alectinib-refractory lung adenocarcinoma.


Assuntos
Neoplasias Pulmonares , Quinase do Linfoma Anaplásico/genética , Carbazóis/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Recidiva Local de Neoplasia , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
7.
Development ; 147(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586974

RESUMO

Long-term survival of an animal species depends on development being robust to environmental variations and climate changes. We used C. elegans to study how mechanisms that sense environmental changes trigger adaptive responses that ensure animals develop properly. In water, the nervous system induces an adaptive response that reinforces vulval development through an unknown backup signal for vulval induction. This response involves the heterotrimeric G-protein EGL-30//Gαq acting in motor neurons. It also requires body-wall muscle, which is excited by EGL-30-stimulated synaptic transmission, suggesting a behavioral function of neurons induces backup signal production from muscle. We now report that increased acetylcholine during liquid growth activates an EGL-30-Rho pathway, distinct from the synaptic transmission pathway, that increases Wnt production from motor neurons. We also provide evidence that this neuronal Wnt contributes to EGL-30-stimulated vulval development, with muscle producing a parallel developmental signal. As diverse sensory modalities stimulate motor neurons via acetylcholine, this mechanism enables broad sensory perception to enhance Wnt-dependent development. Thus, sensory perception improves animal fitness by activating distinct neuronal functions that trigger adaptive changes in both behavior and developmental processes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Proteínas Wnt/metabolismo , Acetilcolina/metabolismo , Citoesqueleto de Actina , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Genótipo , Mutagênese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Transmissão Sináptica/genética , Vulva/crescimento & desenvolvimento , Vulva/metabolismo , Proteínas Wnt/genética
8.
Lung Cancer ; 145: 144-151, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32447118

RESUMO

OBJECTIVE: Patient-derived xenografts (PDX) are useful preclinical models to study cancer biology and mechanisms of drug response/resistance, particularly in molecularly targetable tumors. However, PDX engraftment may not be stochastic. We investigated clinical, histological and molecular features associated with PDX engraftment in a large cohort of EGFR-mutated lung adenocarcinoma (LUAD). MATERIAL AND METHODS: Samples were collected by different methods from patients at various disease stages and phases of treatment. PDX engraftment was defined as an ability to passage tumors twice in NOD-SCID mice. Uni- and multivariate logistic regression evaluated factors associated with engraftment. RESULTS: Among 138 EGFR-mutated LUAD implanted into NOD-SCID mice, the overall engraftment rate was only 10% (14/138). However, engraftment was significantly higher in specimens from surgical resections or core-needle biopsies collected from metastatic sites (5/5; 100%) or from patients who had progressed on EGFR-inhibitors (7/10; 70%). Engrafted tumors usually showed poor histological differentiation, a solid morphologic pattern, and presence of either EGFR T790 M and/or TP53 mutations. CONCLUSIONS: Population level analyses of mutant EGFR-PDX show that these models might not fully recapitulate the inter-patient heterogeneity of EGFR-LUAD. However, mutant EGFR-PDXs may be useful to address key clinical questions, notably development of resistance to EGFR-inhibitors and disease progression to distant metastases.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Animais , Receptores ErbB/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proc Natl Acad Sci U S A ; 117(22): 12101-12108, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414921

RESUMO

Membrane anchoring of farnesylated KRAS is critical for activation of RAF kinases, yet our understanding of how these proteins interact on the membrane is limited to isolated domains. The RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF engage KRAS and the plasma membrane, unleashing the kinase domain from autoinhibition. Due to experimental challenges, structural insight into this tripartite KRAS:RBD-CRD:membrane complex has relied on molecular dynamics simulations. Here, we report NMR studies of the KRAS:CRAF RBD-CRD complex. We found that the nucleotide-dependent KRAS-RBD interaction results in transient electrostatic interactions between KRAS and CRD, and we mapped the membrane interfaces of the CRD, RBD-CRD, and the KRAS:RBD-CRD complex. RBD-CRD exhibits dynamic interactions with the membrane through the canonical CRD lipid-binding site (CRD ß7-8), as well as an alternative interface comprising ß6 and the C terminus of CRD and ß2 of RBD. Upon complex formation with KRAS, two distinct states were observed by NMR: State A was stabilized by membrane association of CRD ß7-8 and KRAS α4-α5 while state B involved the C terminus of CRD, ß3-5 of RBD, and part of KRAS α5. Notably, α4-α5, which has been proposed to mediate KRAS dimerization, is accessible only in state B. A cancer-associated mutation on the state B membrane interface of CRAF RBD (E125K) stabilized state B and enhanced kinase activity and cellular MAPK signaling. These studies revealed a dynamic picture of the assembly of the KRAS-CRAF complex via multivalent and dynamic interactions between KRAS, CRAF RBD-CRD, and the membrane.


Assuntos
Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Cisteína/química , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
10.
Clin Cancer Res ; 26(5): 1162-1174, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31694835

RESUMO

PURPOSE: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide. There is an unmet need to develop novel clinically relevant models of NSCLC to accelerate identification of drug targets and our understanding of the disease. EXPERIMENTAL DESIGN: Thirty surgically resected NSCLC primary patient tissue and 35 previously established patient-derived xenograft (PDX) models were processed for organoid culture establishment. Organoids were histologically and molecularly characterized by cytology and histology, exome sequencing, and RNA-sequencing analysis. Tumorigenicity was assessed through subcutaneous injection of organoids in NOD/SCID mice. Organoids were subjected to drug testing using EGFR, FGFR, and MEK-targeted therapies. RESULTS: We have identified cell culture conditions favoring the establishment of short-term and long-term expansion of NSCLC organoids derived from primary lung patient and PDX tumor tissue. The NSCLC organoids recapitulated the histology of the patient and PDX tumor. They also retained tumorigenicity, as evidenced by cytologic features of malignancy, xenograft formation, preservation of mutations, copy number aberrations, and gene expression profiles between the organoid and matched parental tumor tissue by whole-exome and RNA sequencing. NSCLC organoid models also preserved the sensitivity of the matched parental tumor to targeted therapeutics, and could be used to validate or discover biomarker-drug combinations. CONCLUSIONS: Our panel of NSCLC organoids closely recapitulates the genomics and biology of patient tumors, and is a potential platform for drug testing and biomarker validation.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular/métodos , Mutação , Organoides/patologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Técnicas de Cultura de Órgãos/métodos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 9(1): 12437, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455821

RESUMO

Chemotherapy resistance is a major problem in non-small cell lung cancer (NSCLC) treatment. A major mechanism of chemoresistance involves stabilization of the NRF2 transcription factor. NRF2 levels are normally tightly regulated through interaction with KEAP1, an adaptor that targets NRF2 to the CUL3 E3 ubiquitin ligase for proteolysis. In NSCLC, aberrant NRF2 stabilization is best understood through mutations in NRF2, KEAP1, or CUL3 that disrupt their interaction. Biochemical studies, however, have revealed that NRF2 can also be stabilized through expression of KEAP1-interacting proteins that competitively sequester KEAP1 away from NRF2. Here, we have identified PIDD, as a novel KEAP1-interactor in NSCLC that regulates NRF2. We show that this interaction allows PIDD to reduce NRF2 ubiquitination and increase its stability. We also demonstrate that PIDD promotes chemoresistance in NSCLC cells both in vitro and in vivo, and that this effect is dependent on NRF2. Finally, we report that NRF2 protein expression in a NSCLC cohort exceeds the typical incidence of combined NRF2, KEAP1, and CUL3 mutations, and that NRF2 expression in this cohort is correlated with PIDD levels. Our data identify PIDD as a new NRF2 regulator, and suggest that variations in PIDD levels contribute to differential chemosensitivities among NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fator 2 Relacionado a NF-E2/genética , Proteínas de Neoplasias/genética , Estabilidade Proteica
12.
Neoplasia ; 21(5): 482-493, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30978569

RESUMO

Carcinoma-associated fibroblasts (CAFs) are abundant stromal cells in tumor microenvironment that are critically involved in cancer progression. Contrasting reports have shown that CAFs can have either pro- or antitumorigenic roles, indicating that CAFs are functionally heterogeneous. Therefore, to precisely target the cancer-promoting CAF subsets, it is necessary to identify specific markers to define these subpopulations and understand their functions. We characterized two CAFs subsets from 28 non-small cell lung cancer (NSCLC) patient tumors that were scored and classified based on desmoplasia [mainly characterized by proliferating CAFs; high desmoplastic CAFs (HD-CAF; n = 15) and low desmoplastic CAFs (LD-CAF; n = 13)], which is an independent prognostic factor. Here, for the first time, we demonstrate that HD-CAFs and LD-CAFs show different tumor-promoting abilities. HD-CAFs showed higher rate of collagen matrix remodeling, invasion, and tumor growth compared to LD-CAFs. Transcriptomic analysis identified 13 genes that were differentially significant (fold ≥1.5; adjusted P value < .1) between HD-CAFs and LD-CAFs. The top upregulated differentially expressed gene, ST8SIA2 (11.3 fold; adjusted P value = .02), enhanced NSCLC tumor cell invasion in 3D culture compared to control when it was overexpressed in CAFs, suggesting an important role of ST8SIA2 in cancer cell invasion. We confirmed the protumorigenic role of ST8SIA2, showing that ST8SIA2 was significantly associated with the risk of relapse in three independent NSCLC clinical datasets. In summary, our studies show that functional heterogeneity in CAF plays key role in promoting cancer cell invasion in NSCLC.


Assuntos
Biomarcadores Tumorais/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/patologia , Sialiltransferases/metabolismo , Animais , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Proliferação de Células , Estudos de Coortes , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos SCID , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Sialiltransferases/genética , Células Estromais/metabolismo , Células Estromais/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Clin Cancer Res ; 24(23): 5990-6000, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30093452

RESUMO

PURPOSE: Lung squamous cell carcinoma (LUSC) is a major subtype of non-small cell lung cancer characterized by multiple genetic alterations, particularly PI3K pathway alterations which have been identified in over 50% of LUSC cases. Despite being an attractive target, single-agent PI3K inhibitors have demonstrated modest response in LUSC. Thus, novel combination therapies targeting LUSC are needed. EXPERIMENTAL DESIGN: PI3K inhibitors alone and in combination with CDK4/6 inhibitors were evaluated in previously established LUSC patient-derived xenografts (PDX) using an in vivo screening method. Screening results were validated with in vivo expansion to 5 to 8 mice per arm. Pharmacodynamics studies were performed to confirm targeted inhibition of compounds. RESULTS: Consistent with results from The Cancer Genome Atlas analysis of LUSC, genomic profiling of our large cohort of LUSC PDX models identified PI3K pathway alterations in over 50% of the models. In vivo screening using PI3K inhibitors in 12 of these models identified PIK3CA mutation as a predictive biomarker of response (<20% tumor growth compared with baseline/vehicle). Combined inhibition of PI3K and CDK4/6 in models with PIK3CA mutation resulted in greater antitumor effects compared with either monotherapy alone. In addition, the combination of the two drugs achieved targeted inhibition of the PI3K and cell-cycle pathways. CONCLUSIONS: PIK3CA mutations predict response to PI3K inhibitors in LUSC. Combined PI3K and CDK4/6 inhibition enhances response to either single agents alone. Our findings provide a rationale for clinical testing of combined PI3K and CDK4/6 inhibitors in PIK3CA-mutant LUSC.


Assuntos
Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Modelos Biológicos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cell Proteomics ; 16(10): 1864-1888, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28794006

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide, with squamous cell carcinoma (SQCC) being the second most common form. SQCCs are thought to originate in bronchial basal cells through an injury response to smoking, which results in this stem cell population committing to hyperplastic squamous rather than mucinous and ciliated fates. Copy number gains in SOX2 in the region of 3q26-28 occur in 94% of SQCCs, and appear to act both early and late in disease progression by stabilizing the initial squamous injury response in stem cells and promoting growth of invasive carcinoma. Thus, anti-SOX2 targeting strategies could help treat early and/or advanced disease. Because SOX2 itself is not readily druggable, we sought to characterize SOX2 binding partners, with the hope of identifying new strategies to indirectly interfere with SOX2 activity. We now report the first use of proximity-dependent biotin labeling (BioID) to characterize the SOX2 interactome in vivo We identified 82 high confidence SOX2-interacting partners. An interaction with the coactivator EP300 was subsequently validated in both basal cells and SQCCs, and we demonstrate that EP300 is necessary for SOX2 activity in basal cells, including for induction of the squamous fate. We also report that EP300 copy number gains are common in SQCCs and that growth of lung cancer cell lines with 3q gains, including SQCC cells, is dependent on EP300. Finally, we show that EP300 inhibitors can be combined with other targeted therapeutics to achieve more effective growth suppression. Our work supports the use of BioID to identify interacting protein partners of nondruggable oncoproteins such as SOX2, as an effective strategy to discover biologically relevant, druggable targets.


Assuntos
Biotina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteína p300 Associada a E1A/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Aminopiridinas/farmacologia , Animais , Benzimidazóis/farmacologia , Biotina/genética , Brônquios/citologia , Brônquios/patologia , Progressão da Doença , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/genética , Células HEK293 , Humanos , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Morfolinas/farmacologia , Cultura Primária de Células , Fatores de Transcrição SOXB1/genética , Células-Tronco , Células Tumorais Cultivadas
15.
Int J Cancer ; 140(3): 662-673, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27750381

RESUMO

Availability of lung cancer models that closely mimic human tumors remains a significant gap in cancer research, as tumor cell lines and mouse models may not recapitulate the spectrum of lung cancer heterogeneity seen in patients. We aimed to establish a patient-derived tumor xenograft (PDX) resource from surgically resected non-small cell lung cancer (NSCLC). Fresh tumor tissue from surgical resection was implanted and grown in the subcutaneous pocket of non-obese severe combined immune deficient (NOD SCID) gamma mice. Subsequent passages were in NOD SCID mice. A subset of matched patient and PDX tumors and non-neoplastic lung tissues were profiled by whole exome sequencing, single nucleotide polymorphism (SNP) and methylation arrays, and phosphotyrosine (pY)-proteome by mass spectrometry. The data were compared to published NSCLC datasets of NSCLC primary and cell lines. 127 stable PDXs were established from 441 lung carcinomas representing all major histological subtypes: 52 adenocarcinomas, 62 squamous cell carcinomas, one adeno-squamous carcinoma, five sarcomatoid carcinomas, five large cell neuroendocrine carcinomas, and two small cell lung cancers. Somatic mutations, gene copy number and expression profiles, and pY-proteome landscape of 36 PDXs showed greater similarity with patient tumors than with established cell lines. Novel somatic mutations on cancer associated genes were identified but only in PDXs, likely due to selective clonal growth in the PDXs that allows detection of these low allelic frequency mutations. The results provide the strongest evidence yet that PDXs established from lung cancers closely mimic the characteristics of patient primary tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Xenoenxertos/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
PLoS Biol ; 14(11): e1002581, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27880766

RESUMO

Although cancers are considered stem cell diseases, mechanisms involving stem cell alterations are poorly understood. Squamous cell carcinoma (SQCC) is the second most common lung cancer, and its pathogenesis appears to hinge on changes in the stem cell behavior of basal cells in the bronchial airways. Basal cells are normally quiescent and differentiate into mucociliary epithelia. Smoking triggers a hyperproliferative response resulting in progressive premalignant epithelial changes ranging from squamous metaplasia to dysplasia. These changes can regress naturally, even with chronic smoking. However, for unknown reasons, dysplasias have higher progression rates than earlier stages. We used primary human tracheobronchial basal cells to investigate how copy number gains in SOX2 and PIK3CA at 3q26-28, which co-occur in dysplasia and are observed in 94% of SQCCs, may promote progression. We find that SOX2 cooperates with PI3K signaling, which is activated by smoking, to initiate the squamous injury response in basal cells. This response involves SOX9 repression, and, accordingly, SOX2 and PI3K signaling levels are high during dysplasia, while SOX9 is not expressed. By contrast, during regeneration of mucociliary epithelia, PI3K signaling is low and basal cells transiently enter a SOX2LoSOX9Hi state, with SOX9 promoting proliferation and preventing squamous differentiation. Transient reduction in SOX2 is necessary for ciliogenesis, although SOX2 expression later rises and drives mucinous differentiation, as SOX9 levels decline. Frequent coamplification of SOX2 and PIK3CA in dysplasia may, thus, promote progression by locking basal cells in a SOX2HiSOX9Lo state with active PI3K signaling, which sustains the squamous injury response while precluding normal mucociliary differentiation. Surprisingly, we find that, although later in invasive carcinoma SOX9 is generally expressed at low levels, its expression is higher in a subset of SQCCs with less squamous identity and worse clinical outcome. We propose that early pathogenesis of most SQCCs involves stabilization of the squamous injury state in stem cells through copy number gains at 3q, with the pro-proliferative activity of SOX9 possibly being exploited in a subset of SQCCs in later stages.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/fisiologia , Animais , Diferenciação Celular , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Traqueia/patologia
17.
Dev Biol ; 415(1): 46-63, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207389

RESUMO

Signaling by the epidermal growth factor receptor (EGFR) generates diverse developmental patterns. This requires precise control over the location and intensity of signaling. Elucidation of these regulatory mechanisms is important for understanding development and disease pathogenesis. In Caenorhabditis elegans, LIN-3/EGF induces vulval formation in the mid-body, which requires LET-23/EGFR activation only in P6.p, the vulval progenitor nearest the LIN-3 source. To identify mechanisms regulating this signaling pattern, we screened for mutations that cooperate with a let-23 gain-of-function allele to cause ectopic vulval induction. Here, we describe a dominant gain-of-function mutation in swsn-4, a component of SWI/SNF chromatin remodeling complexes. Loss-of-function mutations in multiple SWI/SNF components reveal that weak reduction in SWI/SNF activity causes ectopic vulval induction, while stronger reduction prevents adoption of vulval fates, a phenomenon also observed with increasing loss of LET-23 activity. High levels of LET-23 expression in P6.p are thought to locally sequester LIN-3, thereby preventing ectopic vulval induction, with slight reductions in its expression interfering with LIN-3 sequestration, but not vulval fate signaling. We find that SWI/SNF positively regulates LET-23 expression in P6.p descendants, providing an explanation for the similarities between let-23 and SWI/SNF mutant phenotypes. However, SWI/SNF regulation of LET-23 expression is cell-specific, with SWI/SNF repressing its expression in the ALA neuron. The swsn-4 gain-of-function mutation affects the PTH domain, and provides the first evidence that its auto-inhibitory function in yeast Sth1p is conserved in metazoan chromatin remodelers. Finally, our work supports broad use of SWI/SNF in regulating EGFR signaling during development, and suggests that dominant SWI/SNF mutations in certain human congenital anomaly syndromes may be gain-of-functions.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Montagem e Desmontagem da Cromatina/fisiologia , Receptores ErbB/fisiologia , Complexos Multiproteicos/fisiologia , Transdução de Sinais/fisiologia , Vulva/embriologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/fisiologia , Montagem e Desmontagem da Cromatina/genética , Indução Embrionária , Feminino , Organismos Hermafroditas , Masculino , Complexos Multiproteicos/genética , Mutação , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Vulva/anormalidades
18.
Health Serv J ; 124(6413): 23-5, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25509489

RESUMO

Employees may not always give or achieve their best but a "one cure fits all" approach will not solve the problem. Knowing how to motivate, value and energise staff is key to successful management and retention. Sharon Crabtree looks at the different factors that can affect staff motivation and explores how to recognize why individual staff may not be achieving or trying to achieve their full potential.


Assuntos
Hospitais Públicos/organização & administração , Pediatria/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Animais , Criança , Humanos , Liderança , Estudos de Casos Organizacionais , Pediatria/organização & administração , Medicina Estatal , Reino Unido
20.
Respir Res ; 15: 160, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551685

RESUMO

BACKGROUND: The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. METHODS: We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. RESULTS: We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. CONCLUSION: This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Células Epiteliais/metabolismo , Citometria de Fluxo/métodos , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Traqueia/metabolismo , Idoso , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Células Epiteliais/transplante , Perfilação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas/genética , Ratos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Reprodutibilidade dos Testes , Transplante de Células-Tronco , Fatores de Tempo , Traqueia/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...