Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Asian J Neurosurg ; 19(1): 63-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38751396

RESUMO

Background Neurosurgery can be a daunting career choice for medical students, with preparation for trainee application often being inaccessible and expensive. This article describes a student-led neurosurgical skills event supported by local neurosurgery faculty members. Such event was designed to offer a means to bridge this gap by providing an opportunity to practice neurosurgical techniques in simulation, and learn about what a career in neurosurgery involves. Methods Pre- and postskills laboratory surveys were used to ascertain the baseline confidence and knowledge of common neurosurgical techniques, as well as to what both the application to neurosurgery and the typical workload of a neurosurgeon involves. The conference offered six neurosurgical workshops as well as three lectures to provide practical and theoretical learning opportunities. The session included introduction to the candidates and faculty, identification of learning objectives, and career discussion. Postcourse feedback also was also used to assess learning outcomes. Results Eighteen students attended the event. Postskills event, students were significantly more likely to understand the principles behind all of the relevant neurosurgical skills included on the day. Additionally, students were more likely to understand what a career in neurosurgery involves, and how to approach applying for a training number. Respondents enjoyed the workshops, valued hands-on experience and interactions with consultants, found it affordable, and would recommend to their peers. Conclusions For medical students interested in a career in neurosurgery, opportunities to learn relevant techniques and skills are often expensive and difficult to come across. Here, we highlight affordable methods of simulation to result in significant student satisfaction. Additionally, providing ample opportunity to practice different neurosurgical techniques under almost 1:1 level tutoring enables significant increases in students' confidence and understanding of different neurosurgical concepts. We greatly encourage other medical student groups to develop their own hands-on simulation events to attract medical students to a surgical field often considered daunting and inaccessible, and address gaps in the medical school curriculum.

2.
J Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686538

RESUMO

Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.

3.
Microb Cell Fact ; 23(1): 13, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183102

RESUMO

BACKGROUND: S. lividans TK24 is a popular host for the production of small molecules and the secretion of heterologous protein. Within its large genome, twenty-nine non-essential clusters direct the biosynthesis of secondary metabolites. We had previously constructed ten chassis strains, carrying deletions in various combinations of specialized metabolites biosynthetic clusters, such as those of the blue actinorhodin (act), the calcium-dependent antibiotic (cda), the undecylprodigiosin (red), the coelimycin A (cpk) and the melanin (mel) clusters, as well as the genes hrdD, encoding a non-essential sigma factor, and matAB, a locus affecting mycelial aggregation. Genome reduction was aimed at reducing carbon flow toward specialized metabolite biosynthesis to optimize the production of secreted heterologous protein. RESULTS: Two of these S. lividans TK24 derived chassis strains showed ~ 15% reduction in biomass yield, 2-fold increase of their total native secretome mass yield and enhanced abundance of several secreted proteins compared to the parental strain. RNAseq and proteomic analysis of the secretome suggested that genome reduction led to cell wall and oxidative stresses and was accompanied by the up-regulation of secretory chaperones and of secDF, a Sec-pathway component. Interestingly, the amount of the secreted heterologous proteins mRFP and mTNFα, by one of these strains, was 12 and 70% higher, respectively, than that secreted by the parental strain. CONCLUSION: The current study described a strategy to construct chassis strains with enhanced secretory abilities and proposed a model linking the deletion of specialized metabolite biosynthetic clusters to improved production of secreted heterologous proteins.


Assuntos
Proteômica , Streptomyces lividans , Streptomyces lividans/genética , Transporte Proteico , Transporte Biológico , Regulação para Cima
4.
Artigo em Inglês | MEDLINE | ID: mdl-37940114

RESUMO

BACKGROUND: Between individual patients with lumbar disk prolapse (LDP), the natural course of disease is significantly variable. Spontaneous resolution is reported to occur in up to 70% of cases. However, we currently cannot predict for whom and when this will occur. Neurosurgical intervention is indicated for LDP patients with nontolerable pain after at least 8 to 12 weeks of conservative management, or significant neurologic deficit. Channeling essential resources in the National Health Service (NHS) to fight the COVID-19 pandemic led to the postponement of most elective operations, including microdiskectomy. This left many LDP patients previously considered to be surgical candidates with conservative-only options in the interim. To our knowledge, we are the first center to report the specific impact of the peri- and postpandemic period on waiting list times, delayed elective microdiskectomy, and the incidence of spontaneous LDP resolution. METHODS: Retrospective case series of a prospectively collected electronic departmental database identified LDP patients who would have been impacted by the COVID-19 pandemic at some point in their care pathway (March 2020-February 2022). Further information was obtained from electronic patient records. RESULTS: In total, 139 LDP patients were listed for elective microdiskectomy at the time of postponement of elective surgery. Over a third of LDP patients (n = 47, 33.8%), in shared decision with the responsible neurosurgeon, had their rescheduled microdiskectomy canceled due to clinical improvement (14.1%), radiologic regression (6.5%), or both (12.2%). CONCLUSION: Our single-center retrospective analysis revealed that for over a third of LDP patients, the prolonged postpandemic waiting list times for elective microdiskectomy resulted in their surgery not taking place either due to spontaneous clinical improvement or proven radiologic regression. Considering this, a prolonged conservative approach to LDP may be appropriate in some patients, allowing time for natural resolution, while avoiding perioperative risks.

5.
Front Immunol ; 14: 1180785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654489

RESUMO

Background: Urinary tract infections are a major cause of the consumption of antibiotics in humans. Methods: We studied the effect of a vaccine (StroVac®, containing inactivated bacteria and used to prevent recurrent urinary tract infections) licensed in Germany on the release of pro-inflammatory cytokines and the phagocytosis of Escherichia (E.) coli in primary murine macrophages and the macrophage cell line J774A.1. Results: StroVac® increased the release of the cytokines TNF-α, IL-6, IL-12/23 p40, and IL-1ß and stimulated the phagocytosis of E. coli in a dose-dependent manner. This effect was independent of LPS as shown by the use of macrophages isolated from LPS-resistant C3H/HeJ mice. At concentrations up to 30 mg/l it was not toxic to bacteria or eukaryotic cells. Conclusion: StroVac® does not only act via the adaptive but also by stimulating the innate immune system. This stimulation may help to build trained innate immunity against bacterial pathogens involved in recurrent urinary tract infections.


Assuntos
Escherichia coli , Infecções Urinárias , Humanos , Animais , Camundongos , Camundongos Endogâmicos C3H , Lipopolissacarídeos , Macrófagos , Vacinação , Infecções Urinárias/prevenção & controle , Bactérias , Citocinas
6.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982963

RESUMO

Left ventricular (LV) dilatation, a prominent risk factor for heart failure (HF), precedes functional deterioration and is used to stratify patients at risk for arrhythmias and cardiac mortality. Aberrant DNA methylation contributes to maladaptive cardiac remodeling and HF progression following pressure overload and ischemic cardiac insults. However, no study has examined cardiac DNA methylation upon exposure to volume overload (VO) despite being relatively common among HF patients. We carried out global methylome analysis of LV harvested at a decompensated HF stage following exposure to VO induced by aortocaval shunt. VO resulted in pathological cardiac remodeling, characterized by massive LV dilatation and contractile dysfunction at 16 weeks after shunt. Although methylated DNA was not markedly altered globally, 25 differentially methylated promoter regions (DMRs) were identified in shunt vs. sham hearts (20 hypermethylated and 5 hypomethylated regions). The validated hypermethylated loci in Junctophilin-2 (Jph2), Signal peptidase complex subunit 3 (Spcs3), Vesicle-associated membrane protein-associated protein B (Vapb), and Inositol polyphosphate multikinase (Ipmk) were associated with the respective downregulated expression and were consistently observed in dilated LV early after shunt at 1 week after shunt, before functional deterioration starts to manifest. These hypermethylated loci were also detected peripherally in the blood of the shunt mice. Altogether, we have identified conserved DMRs that could be novel epigenetic biomarkers in dilated LV upon VO exposure.


Assuntos
Metilação de DNA , Insuficiência Cardíaca , Camundongos , Animais , Remodelação Ventricular/genética , Coração , Insuficiência Cardíaca/metabolismo , Cardiomegalia/genética , Epigênese Genética
7.
Biomolecules ; 13(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36671480

RESUMO

Severe aortic stenosis (AS) is a common pathological condition in an ageing population imposing significant morbidity and mortality. Based on distinct hemodynamic features, i.e., ejection fraction (EF), transvalvular gradient and stroke volume, four different AS subtypes can be distinguished: (i) normal EF and high gradient, (ii) reduced EF and high gradient, (iii) reduced EF and low gradient, and (iv) normal EF and low gradient. These subtypes differ with respect to pathophysiological mechanisms, cardiac remodeling, and prognosis. However, little is known about metabolic changes in these different hemodynamic conditions of AS. Thus, we carried out metabolomic analyses in serum samples of 40 AS patients (n = 10 per subtype) and 10 healthy blood donors (controls) using ultrahigh-performance liquid chromatography-tandem mass spectroscopy. A total of 1293 biochemicals could be identified. Principal component analysis revealed different metabolic profiles in all of the subgroups of AS (All-AS) vs. controls. Out of the determined biochemicals, 48% (n = 620) were altered in All-AS vs. controls (p < 0.05). In this regard, levels of various acylcarnitines (e.g., myristoylcarnitine, fold-change 1.85, p < 0.05), ketone bodies (e.g., 3-hydroxybutyrate, fold-change 11.14, p < 0.05) as well as sugar metabolites (e.g., glucose, fold-change 1.22, p < 0.05) were predominantly increased, whereas amino acids (e.g., leucine, fold-change 0.8, p < 0.05) were mainly reduced in All-AS. Interestingly, these changes appeared to be consistent amongst all AS subtypes. Distinct differences between AS subtypes were found for metabolites belonging to hemoglobin metabolism, diacylglycerols, and dihydrosphingomyelins. These findings indicate that relevant changes in substrate utilization appear to be consistent for different hemodynamic subtypes of AS and may therefore reflect common mechanisms during AS-induced heart failure. Additionally, distinct metabolites could be identified to significantly differ between certain AS subtypes. Future studies need to define their pathophysiological implications.


Assuntos
Estenose da Valva Aórtica , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Hemodinâmica
8.
Anticancer Agents Med Chem ; 23(3): 328-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35708084

RESUMO

BACKGROUND: Some heterocycles having bisamide linkage are receiving much interest due to their remarkable biological potencies and they are naturally occurring. Some bisamides and thiazole derivatives were found to inhibit the protein levels of Bcl-2 significantly. This prompted us to synthesize new bis(heterocyclic) derivatives having bisamide function to explore their anti-cancer activities. METHODS: Novel bis-amide-based bis-thiazoles and thiadiazoles were synthesized by reaction of a new bisthiosemicarbazone with a variety of hydrazonoyl chlorides, a-chloroacetylacetone and haloacetic acid derivatives. Most of the synthesized derivatives were tested for colorectal (HCT-116) and breast (MCF-7) cell lines using the MTT assay, with the apoptotic investigation through flow cytometric and RT-PCR analyses. RESULTS: Some derivatives were found to be highly cytotoxic against HCT-116 cells with an IC50 range of (10.44-13.76 µM) compared to 5-fluorouracil (5-FU) (IC50 = 11.78 µM). One product significantly stimulated apoptotic colorectal cancer cell death by 27.24-fold (50.13% compared to control 1.84%) by arresting the cell cycle at the G2/M phase. The obtained results revealed that compound 7f was more cytotoxic against HCT-116 cells than 5-FU. Compound 7f remarkably enhanced apoptotic colorectal cancer cell death and upregulated the propapoptotic genes (P53, BAX and Capases-3,-8,-9) and downregulated the anti-apoptotic gene, B-cell lymphoma 2 (Bcl-2). In vivo study exhibited that 7f-treatment caused tumor inhibition ratio (TIR%) of 50.45% compared to 54.86% in the 5-FU treatment, with a significant reduction in tumor mass and volume. The anti-tumor activity of compound 7f was accompanied by ameliorated hematological and biochemical analyses, histopathological improvement in treated liver tissues, and the immunohistochemical staining revealed Bcl-2 inhibition in agreement with the in vitro results. CONCLUSION: Compound 7f is an interesting candidate for further development as a chemotherapeutic anti-cancer agent.


Assuntos
Antineoplásicos , Neoplasias , Tiadiazóis , Humanos , Tiazóis/farmacologia , Antineoplásicos/farmacologia , Fluoruracila , Amidas
9.
J Cell Mol Med ; 26(16): 4440-4452, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35860864

RESUMO

Adrenergic stimulation in the heart activates the protein kinase A (PKA), which phosphorylates key proteins involved in intracellular Ca2+ handling. PKA is held in proximity to its substrates by protein scaffolds, the A kinase anchoring proteins (AKAPs). We have previously identified the transcript of phosphodiesterase 4D interacting protein (Pde4dip; also known as myomegalin), one of the sarcomeric AKAPs, as being differentially expressed following hemodynamic overload, a condition inducing hyperadrenergic state in the heart. Here, we addressed whether PDE4DIP is involved in the adverse cardiac remodelling following hemodynamic stress. Homozygous Pde4dip knockout (KO) mice, generated by CRISPR-Cas9 technology, and wild-type (WT) littermates were exposed to aortocaval shunt (shunt) or transthoracic aortic constriction (TAC) to induce hemodynamic volume overload (VO) or pressure overload (PO), respectively. The mortality, cardiac structure, function and pathological cardiac remodelling were followed up after hemodynamic injuries. The PDE4DIP protein level was markedly downregulated in volume-overloaded- but upregulated in pressure-overloaded-WT hearts. Following shunt or TAC, mortality rates were comparably increased in both genotypes. Twelve weeks after shunt or TAC, Pde4dip-KO animals showed a similar degree of cardiac hypertrophy, dilatation and dysfunction as WT mice. Cardiomyocyte hypertrophy, myocardial fibrosis, reactivation of cardiac stress genes and downregulation of ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 transcript did not differ between WT and Pde4dip-KO hearts following shunt or TAC. In summary, despite a differential expression of PDE4DIP protein in remodelled WT hearts, Pde4dip deficiency does not modulate adverse cardiac remodelling after hemodynamic VO or PO.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Animais , Cardiomegalia/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Insuficiência Cardíaca/metabolismo , Hemodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/genética
10.
J Transl Med ; 20(1): 229, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568953

RESUMO

BACKGROUND: Molecular chaperones assist protein folding, facilitate degradation of misfolded polypeptides, and thereby maintain protein homeostasis. Impaired chaperone activity leads to defective protein quality control that is implicated in multiple skeletal muscle diseases. The heat shock protein A4 (HSPA4) acts as a co-chaperone for HSP70. Previously, we showed that Hspa4 deletion causes impaired protein homeostasis in the heart. However, its functional role in skeletal muscle has not been explored. METHODS: We performed a comparative phenotypic and biochemical analyses of Hspa4 knockout (KO) mice with wild-type (WT) littermates. RESULTS: HSPA4 is markedly upregulated in regenerating WT muscle in vivo, and in differentiated myoblasts in vitro. Hspa4-KO mice are marked by growth retardation and increased variability in body weight, accompanied by 35% mortality rates during the peri-weaning period. The surviving Hspa4-KO mice experienced progressive skeletal muscle myopathy, characterized by increased number of muscle fibers with centralized nuclei, heterogeneous myofiber size distribution, inflammatory cell infiltrates and upregulation of embryonic and perinatal myosin heavy chain transcripts. Hspa4-KO muscles demonstrated an accumulation of autophagosome-associated proteins including microtubule associated protein1 light chain 3-II (LC3-II) and p62/sequestosome accompanied by increased number of TUNEL-positive nuclei. CONCLUSIONS: Our findings underscore the indispensable role of HSPA4 in maintenance of muscle integrity through contribution in skeletal muscle autophagy and apoptosis, which might provide a novel therapeutic strategy for skeletal muscle morbidities.


Assuntos
Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico , Doenças Musculares , Animais , Apoptose , Autofagia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo
11.
ESC Heart Fail ; 9(3): 1823-1831, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315235

RESUMO

AIMS: Pressure overload (PO) and volume overload (VO) lead to concentric or eccentric hypertrophy. Previously, we could show that activation of signalling cascades differ in in vivo mouse models. Activation of these signal cascades could either be induced by intrinsic load sensing or neuro-endocrine substances like catecholamines or the renin-angiotensin-aldosterone system. METHODS AND RESULTS: We therefore analysed the activation of classical cardiac signal pathways [mitogen-activated protein kinases (MAPKs) (ERK, p38, and JNK) and Akt-GSK3ß] in in vitro of mechanical overload (ejecting heart model, rabbit and human isolated muscle strips). Selective elevation of preload in vitro increased AKT and GSK3ß phosphorylation after 15 min in isolated rabbit muscles strips (AKT 49%, GSK3ß 26%, P < 0.05) and in mouse ejecting hearts (AKT 51%, GSK49%, P < 0.05), whereas phosphorylation of MAPKs was not influenced by increased preload. Selective elevation of afterload revealed an increase in ERK phosphorylation in the ejecting heart (43%, P < 0.05), but not in AKT, GSK3ß, and the other MAPKs. Elevation of preload and afterload in the ejecting heart induced a significant phosphorylation of ERK (95%, P < 0.001) and showed a moderate increased AKT (P = 0.14) and GSK3ß (P = 0.21) phosphorylation, which did not reach significance. Preload and afterload elevation in muscles strips from human failing hearts showed neither AKT nor ERK phosphorylation changes. CONCLUSIONS: Our data show that preload activates the AKT-GSK3ß and afterload the ERK pathway in vitro, indicating an intrinsic mechanism independent of endocrine signalling.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-akt , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Coração , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Transdução de Sinais
12.
Methods Mol Biol ; 2520: 265-273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34724189

RESUMO

Embryonic stem cells (ESCs), derived from the inner cell mass of the blastocyst, can proliferate indefinitely in vitro (self-renewal) and can differentiate into cells of all three germ layers (pluripotency). These unique properties make them exceptionally valuable in basic science and clinical researches, including cell replacement therapies, drug discovery, and regenerative medicine. Mouse ESCs represent an important model system for studying gene function during development and disease.ESCs culture is time-consuming, laborious, and costly. Suboptimal ESCs culture conditions can alter their identity, pluripotency, and their compatibility with downstream differentiation protocols. In this chapter, we provide a general guideline for murine ESCs culture on murine fibroblast feeder layers. Moreover, we describe protocols for maintenance of ESCs pluripotency and induction of ESCs differentiation.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas , Animais , Diferenciação Celular , Células Alimentadoras , Camadas Germinativas , Camundongos
13.
Nat Commun ; 12(1): 6586, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782600

RESUMO

An interplay between Ca2+/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na+ current (INaL) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform NaV1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of NaV1.8, we demonstrate that NaV1.8 contributes to INaL formation. In addition, we reveal a direct interaction between NaV1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of NaV1.8 and CaMKIIδc, we show that NaV1.8-driven INaL is CaMKIIδc-dependent and that NaV1.8-inhibtion reduces diastolic SR-Ca2+ leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a NaV1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Homeostase/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Sistemas CRISPR-Cas , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Medicina Molecular , Miócitos Cardíacos
14.
Br J Neurosurg ; : 1-6, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34472417

RESUMO

The impact of Covid-19 on surgical patients worldwide has been substantial. In the United Kingdom (UK) and the Republic of Ireland (RoI), the first wave of the pandemic occurred in March 2020. The aims of this study were to: (1) evaluate the volume of neurosurgical operative activity levels, Covid-19 infection rate and mortality rate in April 2020 with a retrospective cross-sectional cohort study conducted across 16 UK and RoI neurosurgical centres, and (2) compare patient outcomes in a single institution in April-June 2020 with a comparative cohort in 2019. Across the UK and RoI, 818 patients were included. There were 594 emergency and 224 elective operations. The incidence rate of Covid-19 infection was 2.6% (21/818). The overall mortality rate in patients with a Covid-19 infection was 28.6% (6/21). In the single centre cohort analysis, an overall reduction in neurosurgical operative activity by 65% was observed between 2020 (n = 304) and 2019 (n = 868). The current and future impact on UK neurosurgical operative activity has implications for service delivery and neurosurgical training.

15.
Front Chem ; 9: 694870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458233

RESUMO

A series of bis-thiazoles 5a-g were synthesized from bis-thiosemicarbazone 3 with hydrazonoyl chlorides 4a-g. Reaction of 3 with two equivalents of α-halocarbonyl compounds 6-8, 10, and 12a-d afforded the corresponding bis-thiazolidines 9, 11, and 13a-d, respectively. Condensation of bis-thiazolidin-4-one 9 with different aromatic aldehydes furnished bis-thiazolidin-4-ones 14a-d. Compounds 5a-g, 9, and 13a,c,d were screened in vitro for their cytotoxic activities in a panel of cancer cell lines. Compounds 5a-c, 5f-g, and 9 exhibited remarkable cytotoxic activities, especially compound 5c with potent IC50 value 0.6 nM (against cervical cancer, Hela cell line) and compound 5f with high IC50 value 6 nM (against ovarian cancer, KF-28 cell line). Compound 5f-induced appreciated apoptotic cell death was measured as 82.76% associated with cell cycle arrest at the G1 phase. The apoptotic pathways activated in KF-28 cells treated with 5a, 5b, and 5f were further investigated. The upregulation of some pro-apoptotic genes, bax and puma, and the downregulation of some anti-apoptotic genes including the Bcl-2 gene were observed, indicating activation of the mitochondrial-dependent apoptosis. Together with the molecular docking studies of compounds 5a and 5b, our data revealed potential Pim-1 kinase inhibition through their high binding affinities indicated by inhibition of phosphorylated C-myc as a downstream target for Pim-1 kinase. Our study introduces a set of bis-thiazoles with potent anti-cancer activities, in vitro.

16.
Front Microbiol ; 12: 604034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935985

RESUMO

Streptomyces lividans TK24 is a relevant Gram-positive soil inhabiting bacterium and one of the model organisms of the genus Streptomyces. It is known for its potential to produce secondary metabolites, antibiotics, and other industrially relevant products. S. lividans TK24 is the plasmid-free derivative of S. lividans 66 and a close genetic relative of the strain Streptomyces coelicolor A3(2). In this study, we used transcriptome and proteome data to improve the annotation of the S. lividans TK24 genome. The RNA-seq data of primary 5'-ends of transcripts were used to determine transcription start sites (TSS) in the genome. We identified 5,424 TSS, of which 4,664 were assigned to annotated CDS and ncRNAs, 687 to antisense transcripts distributed between 606 CDS and their UTRs, 67 to tRNAs, and 108 to novel transcripts and CDS. Using the TSS data, the promoter regions and their motifs were analyzed in detail, revealing a conserved -10 (TAnnnT) and a weakly conserved -35 region (nTGACn). The analysis of the 5' untranslated region (UTRs) of S. lividans TK24 revealed 17% leaderless transcripts. Several cis-regulatory elements, like riboswitches or attenuator structures could be detected in the 5'-UTRs. The S. lividans TK24 transcriptome contains at least 929 operons. The genome harbors 27 secondary metabolite gene clusters of which 26 could be shown to be transcribed under at least one of the applied conditions. Comparison of the reannotated genome with that of the strain Streptomyces coelicolor A3(2) revealed a high degree of similarity. This study presents an extensive reannotation of the S. lividans TK24 genome based on transcriptome and proteome analyses. The analysis of TSS data revealed insights into the promoter structure, 5'-UTRs, cis-regulatory elements, attenuator structures and novel transcripts, like small RNAs. Finally, the repertoire of secondary metabolite gene clusters was examined. These data provide a basis for future studies regarding gene characterization, transcriptional regulatory networks, and usage as a secondary metabolite producing strain.

17.
Microorganisms ; 9(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805695

RESUMO

The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO's top pathogens list). Seven of them-HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14-representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 µM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9-77.8 µM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 µM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 µM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.

18.
Cardiovasc Res ; 117(1): 178-187, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821410

RESUMO

AIMS: Chronic pressure or volume overload induce concentric vs. eccentric left ventricular (LV) remodelling, respectively. Previous studies suggest that distinct signalling pathways are involved in these responses. NADPH oxidase-4 (Nox4) is a reactive oxygen species-generating enzyme that can limit detrimental cardiac remodelling in response to pressure overload. This study aimed to assess its role in volume overload-induced remodelling. METHODS AND RESULTS: We compared the responses to creation of an aortocaval fistula (Shunt) to induce volume overload in Nox4-null mice (Nox4-/-) vs. wild-type (WT) littermates. Induction of Shunt resulted in a significant increase in cardiac Nox4 mRNA and protein levels in WT mice as compared to Sham controls. Nox4-/- mice developed less eccentric LV remodelling than WT mice (echocardiographic relative wall thickness: 0.30 vs. 0.27, P < 0.05), with less LV hypertrophy at organ level (increase in LV weight/tibia length ratio of 25% vs. 43%, P < 0.01) and cellular level (cardiomyocyte cross-sectional area: 323 µm2 vs. 379 µm2, P < 0.01). LV ejection fraction, foetal gene expression, interstitial fibrosis, myocardial capillary density, and levels of myocyte apoptosis after Shunt were similar in the two genotypes. Myocardial phospho-Akt levels were increased after induction of Shunt in WT mice, whereas levels decreased in Nox4-/- mice (+29% vs. -21%, P < 0.05), associated with a higher level of phosphorylation of the S6 ribosomal protein (S6) and the eIF4E-binding protein 1 (4E-BP1) in WT compared to Nox4-/- mice. We identified that Akt activation in cardiac cells is augmented by Nox4 via a Src kinase-dependent inactivation of protein phosphatase 2A. CONCLUSION: Endogenous Nox4 is required for the full development of eccentric cardiac hypertrophy and remodelling during chronic volume overload. Nox4-dependent activation of Akt and its downstream targets S6 and 4E-BP1 may be involved in this effect.


Assuntos
Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , NADPH Oxidase 4/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Derivação Arteriovenosa Cirúrgica , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
19.
FEBS J ; 288(10): 3317-3329, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33245852

RESUMO

Differentiation of the embryonic stem cells (ESCs) is regulated by a variety of different signaling pathways. Genetic depletion of murine Pelota gene (Pelo) leads to early embryonic lethality. Here, we aimed at determining the embryonic stage and deciphering the dysregulated signaling pathways affected upon Pelo deletion. We found that development of PELO-null embryos is perturbed between the embryonic days E4.5 and E5.5, at which first differentiation process of ESCs takes place. Molecular analysis revealed enhanced activity of phosphoinositide 3-kinase-protein kinase B/ AKT (PI3K-PKB/AKT) signaling, but nuclear accumulation of forkhead box O1 (FOXO1), and upregulation of the pluripotency-related gene, Oct4, in mutant ESCs cultured under differentiation condition. Despite increased levels of nuclear ß-catenin in PELO-null ESCs as a result of decreased activity of glycogen synthase kinase-3ß, the activity of the canonical wingless (Wnt)/ß-catenin/T-cell factor (TCF) was significantly attenuated as judged by the promoter reporter assay, downregulated Wnt/ß-catenin target genes, and impaired cell proliferation. Interestingly, we demonstrated an increased binding of ß-catenin to FOXO1 in PELO-mutant ESCs cultured under differentiation condition that could explain, on one side, the nuclear accumulation of FOXO1 protein and hence persistent pluripotency of PELO-mutant ESCs, and on the other side, the dysregulated transcriptional activity of ß-catenin/TCF and therefore attenuated PELO-null ESC self-renewal. Taken together, our results strongly suggest that PELO deletion averts ESC differentiation through promoting FOXO1/ß-catenin binding with subsequent dysregulation of FOXO1 and canonical ß-catenin/TCF signaling pathways.


Assuntos
Proteínas de Ciclo Celular/genética , Endonucleases/genética , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Células-Tronco Embrionárias Murinas/metabolismo , beta Catenina/genética , Animais , Proteínas de Ciclo Celular/deficiência , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/farmacologia , Embrião de Mamíferos , Endonucleases/deficiência , Proteína Forkhead Box O1/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo
20.
Sci Rep ; 10(1): 19317, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168890

RESUMO

We demonstrate a label-free imaging approach to study cardiac remodeling of fibrotic and hypertrophic hearts, bridging scales from the whole organ down to the molecular level. To this end, we have used mice subjected to transverse aortic constriction and imaged adjacent cardiac tissue sections by microfocus X-ray diffraction and second harmonic generation (SHG) imaging. In this way, the acto-myosin structure was probed in a spatially resolved manner for entire heart sections. From the recorded diffraction data, spatial maps of diffraction intensity, anisotropy and orientation were obtained, and fully automated analysis depicted the acto-myosin filament spacing and direction. X-ray diffraction presented an overview of entire heart sections and revealed that in regions of severe cardiac remodeling the muscle mass is partly replaced by connective tissue and the acto-myosin lattice spacing is increased at these regions. SHG imaging revealed sub-cellular structure of cardiac tissue and complemented the findings from X-ray diffraction by revealing micro-level distortion of myofibrils, immune cell infiltration at regions of cardiac remodeling and the development of fibrosis down to the scale of a single collagen fibril. Overall, our results show that both X-ray diffraction and SHG imaging can be used for label-free and high-resolution visualization of cardiac remodeling and fibrosis progression at different stages in a cardiac pressure-overload mouse model that cannot be achieved by conventional histology.


Assuntos
Coração/diagnóstico por imagem , Coração/fisiologia , Microscopia de Geração do Segundo Harmônico/métodos , Difração de Raios X/métodos , Actomiosina/metabolismo , Animais , Anisotropia , Biomarcadores/metabolismo , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Análise por Conglomerados , Colágeno/química , Circulação Coronária , Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Hipertensão/diagnóstico por imagem , Hipertensão/fisiopatologia , Processamento de Imagem Assistida por Computador , Camundongos , Dinâmica não Linear , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...