Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 21(1): 12, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757520

RESUMO

BACKGROUND: Carbohydrates are known as the main natural products of life activities. RESULTS: Streptomyces rochie strain OF1 isolated from a mangrove tree produced exopolysaccharide S5 (EPSS5) (14.2 gl-1) containing uronic acid 21.98% sulfate content of 11.65 mg/ml, and a viscosity of 1.35 mm2/s. while total hexose amine content was 24.72%. The high performance liquid chromatography (HPLC) analysis of mono sugars revealed that EPS was composed of manouronic acid, glucuronic acid, xylose, and fructose at a molar ratio of 1.0:0.5:1.0:2.0, respectively. It showed that the whole antioxidant activity was 92.06%. It showed antibacterial activity against Staphylococcus aureus, and E. coli, MRSA and Klebsiella pneumoniae. But, EPSS5 displayed low antifungal activity against Candida albicans. While no antifungal activity has been detected against Aspergillus niger. EPSS5 has antibiofilm action that is noticeable toward S. aureus with an inhibition ratio of biofilm up to 50%. Effect of EPS on serum levels of TNF-α and COX2 by 2 fold and 1.9 fold of EPS reduced serum levels of Tumor necrosis factor-α (TNF-α) by 38%, 12%, 49%, and Cyclooxygenase-2 (COX2) by 61%, 34%, and 62%, respectively. By affected of EPSS5 on arthritis in rats stimulated by carrageenan. CONCLUSIONS: Administration of EPS ameliorated carrageen-induced elevation in inflammatory mediators; TNF-α/COX and suppressed the expressions of metalloproteinase 9 (MMP9) by 68%, 86%, and 75% correspondingly in comparison to the group of carrageenans. Then again, therapy involving a high dose only reduced MMP9 level by 57%, compared to free drug suggesting that EPSS5 is a good inhibitor of the MMP9, as it brought MMP9 back to normal levels via the signaling pathway.

2.
J Genet Eng Biotechnol ; 19(1): 162, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34665351

RESUMO

BACKGROUND: The ocean is one of the world's most important sources of bioactive chemicals in the marine environment. Microbiologists, ecologists, agronomists, taxonomists, and evolutionary biologists have been increasingly interested in marine microbial natural products (MMNPs) in recent decades. MAIN BODY: Diverse marine bacteria appear to get the ability to manufacture an astounding diversity of MMNPs with a wide range of biological actions, including anti-tumor, antimicrobial, and anti-cardiovascular agents according to numerous studies. SHORT CONCLUSIONS: Innovative isolation and culture methodologies, tactics for identifying novel MMNPs via routine screens, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology are all discussed in this review. There is also a discussion of potential issues and future directions for studying MMNPs.

3.
J Genet Eng Biotechnol ; 19(1): 72, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982192

RESUMO

BACKGROUND: The ability to produce microbial bioactive compounds makes actinobacteria one of the most explored microbes among prokaryotes. The secondary metabolites of actinobacteria are known for their role in various physiological, cellular, and biological processes. MAIN BODY: Actinomycetes are widely distributed in natural ecosystem habitats such as soil, rhizosphere soil, actinmycorrhizal plants, hypersaline soil, limestone, freshwater, marine, sponges, volcanic cave-hot spot, desert, air, insects gut, earthworm castings, goat feces, and endophytic actinomycetes. The most important features of microbial bioactive compounds are that they have specific microbial producers: their diverse bioactivities and their unique chemical structures. Actinomycetes represent a source of biologically active secondary metabolites like antibiotics, biopesticide agents, plant growth hormones, antitumor compounds, antiviral agents, pharmacological compounds, pigments, enzymes, enzyme inhibitors, anti-inflammatory compounds, single-cell protein feed, and biosurfactant. SHORT CONCLUSIONS: Further highlight that compounds derived from actinobacteria can be applied in a wide range of industrial applications in biomedicines and the ecological habitat is under-explored and yet to be investigated for unknown, rare actinomycetes diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA