Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127860, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939755

RESUMO

Bioglass is widely used in skeletal tissue engineering due to its outstanding bioactive properties. In the present study, magnetic mesoporous bioglass (MMBG) synthesized through the sol-gel method was incorporated into poly(3-hydroxybutyrate)-chitosan (PHB-Cs) solution and the resulting electrospun nanocomposite scaffolds were investigated and compared with MMBG free scaffold. The addition of 10 wt% MMBG has an outstanding effect on producing ultra-thin electrospun nanocomposite fibers due to its magnetic content (diameter of ≃128 nm). This improvement led to better mechanical properties, including an increase in both tensile modulus (up to ≃229 MPa) and tensile strength (to ≃4.95 MPa). Although the inclusion of MMBG slightly decreased the surface roughness of the nanofibrous scaffold (RMS from ≃197 to 154 nm), it could improve the wettability (WCA from ≃54 to 44°). This achievement has the potential to bring an enhancement in biomineralization and biological response. These outputs, combined with the observed increase in human osteoblast MG-63 cell viability (≃53 % improvement) as measured by MTT assay, DAPI, and SEM indicate prefer cell behavior of this nanocomposite structure. Additionally, the qualitative improvement in Alizarin Red staining and the quantitative enhancement of ALP secretion, serve as further evidence of the PHB-Cs/MMBG ultrathin nanofibers potential in bone tissue engineering.


Assuntos
Quitosana , Nanocompostos , Nanofibras , Humanos , Engenharia Tecidual/métodos , Quitosana/química , Alicerces Teciduais/química , Ácido 3-Hidroxibutírico , Fenômenos Magnéticos , Nanocompostos/química , Nanofibras/química , Poliésteres/química
2.
Int J Biol Macromol ; 250: 126076, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532195

RESUMO

The electrospun scaffolds could mimic the highly hierarchical structure of extracellular matrix (ECM). Modern tissue engineering focuses on the properties of these microstructures, influencing the biological responses. This research investigates the variation of morphology, crystallinity, bioactivity, mechanical properties, contact angle, mass loss rate, roughness, cell behavior, biomineralization, and the efficacy of polyhydroxybutyrate (PHB)-based nanocomposite. Hence, 6 wt% lignin and 3 wt% cellulose nanofiber were added to the 9 wt% of PHB to prepare a novel electrospun nanocomposite structure (PLC). The outputs indicated more symmetrical circular fibers for PLC mat, higher surface roughness (326 to 389 nm), better hydrophilicity (120 to 60°), smaller crystal size (24 to 16 nm), and more reasonable biodegradability compared to PHB. These changes lead to the improvement of mechanical properties (toughness factor from 300 to 1100), cell behavior (viability from 60 to 100 %), bioactivity (from Ca/P ratio of 0.77 and 1.67), and higher level of alizarin red, and ALP enzyme secretion. Eventually, the osteopontin and alkaline phosphatase expression was also enhanced from ≃2.35 ± 0.15 and 2.1 ± 0.1 folds on the 1st day to ≃12.05 ± 0.35 and 7.95 ± 0.35 folds on 2nd week in PLCs. Accordingly, this newly developed structure could enhance biological responses and promote osteogenesis compared to PHB.

3.
Int J Biol Macromol ; 230: 123167, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621738

RESUMO

Polyhydroxybutyrate (PHB) is a natural-source biopolymer of the polyhydroxyalkanoate (PHA) family. Nanofibrous scaffolds prepared from this biological macromolecule have piqued the interest of researchers in recent years due to their unique properties. Nonetheless, these nanofibers continue to have problems such as low surface roughness and high hydrophobicity. In this research, PHB nanofibers were produced by the electrospinning method. Following that, the surface of nanofibers was modified by atmospheric plasma. Scanning electron microscopy (SEM), water contact angle (WCA), atomic force microscopy (AFM), tensile test, and cell behavior analyses were performed on mats to investigate the performance of treated and untreated samples. The achieved results showed a lower water contact angle (from ≃120° to 43°), appropriate degradation rate (up to ≃20 % weight loss in four months), and outstanding biomineralization (Ca/P ratio of ≃1.86) for the modified sample compared to the neat PHB. Finally, not only the MTT test show better viability of MG63 osteoblast cells, but also Alizarin staining, ALP, and SEM results likewise showed better cell proliferation in the presence of modified mats. These findings back up the claim that plasma surface modification is a quick, environmentally friendly, and low-cost way to improve the performance of nanofibers in bone tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais , Água , Poliésteres/farmacologia , Proliferação de Células
4.
Int J Biol Macromol ; 220: 1402-1414, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116594

RESUMO

The choice of materials and preparation methods are the most important factors affecting the final characteristics of the scaffolds. In this study, cellulose nanofibers (CNFs) as a nano-additive reinforcer were selected to prepare a polyhydroxybutyrate (PHB) based nanocomposite mat. The PHB/CNF (PC) scaffold properties, created via the electrospinning method, were investigated and compared with pure PHB. The obtained results, in addition to a slight increment of crystallinity (from ≃46 to 53 %), showed better water contact angle (from ≃120 to 96°), appropriate degradation rate (up to ≃25 % weight loss in two months), prominent biomineralization (Ca/P ratio about 1.50), and ≃89 % increment in toughness factor of PC compare to the neat PHB. Moreover, the surface roughness as an affecting parameter on cell behavior was also increased up to ≃43 % in the presence of CNFs. Eventually, not only the MTT assay revealed better human osteoblast MG63 cell viability on PC samples, but also DAPI staining and SEM results confirmed the more plausible cell spreading in the presence of cellulose nano-additive. These improvements, along with the appropriate results of ALP and Alizarin red, authenticate that the newly PC nanocomposite composition has the required efficiency in the field of bone tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Celulose , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais , Água
5.
Int J Biol Macromol ; 218: 317-334, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35882262

RESUMO

The tissue engineering scaffolds requires efficient combination of materials, appropriate method of preparation, and precise characterization of final product. In this study, the optimal electrospinning process conditions of polyhydroxybutyrate (PHB) were investigated by Taguchi design. Then, the initial PHB solution characteristics in the presence of lignin were optimized and then electro-spun. In this regard, the uniformity of electro-spun nanofibers, observed by SEM, confirmed that 9 w/v % is the optimum concentration of PHB in Trifluoro acetic acid. Addition of 6 wt% of lignin to PHB, could alleviate both the brittleness and hydrophobicity of PHB, as DSC, XRD, and WCA results indicated decrement in crystallinity (from 46 to 39 %), crystal size (from 21.8 to 15.2 nm), and WCA (from 118 to 73°). On the other hand, FESEM results represented diameter reduction from 1318 ± 202.07 to 442 ± 111.04 nm, and transformation of nanofiber physical structure from ribbon-like to cylindrical fiber by adding lignin. In addition, the mechanical properties of PHB including elongation at break, toughness, young modulus, and tensile strength were also improved (up to twice) by adding lignin. Ultimately, reviewing the outputs of degradation, bioactivity, MG63 cell viability, proliferation, mineralization, and antioxidant activity confirm that PHB/lignin electrospun scaffold has potential application in tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Hidroxibutiratos/química , Lignina , Nanofibras/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA