Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771016

RESUMO

Arsenic (As) poisoning is widespread due to exposure to pollution. The toxic level of (As) causes oxidative stress-induced aging and tissue damage. Since melatonin (MLT) has anti-oxidant and anti-aging properties, we aimed to evaluate the protective effect of MLT against the toxicity of sodium arsenite (NaAsO2). Healthy male NMRI mice were divided into eight different groups. The control group received a standard regular diet. Other groups were treated with varying diets, including MLT alone, NaAsO2, and NaAsO2 plus MLT. After one month of treatment, biochemical and pathological tests were performed on blood, heart, and lung tissue samples. NaAsO2 increased the levels of TNF-α, 8-hydroxy-2-deoxy guanosine (8OHdG), malondialdehyde (MDA), reactive oxygen species (ROS), and high mobility group box 1 (HMGB1), increased the expression of TNF receptor type 1-associated death domain (TRADD) mRNA and telomerase reverse transcriptase, and decreased the expression of Klotho (KL) mRNA in both plasma and tissues. In contrast, MLT reduced MDA, ROS, HMGB1, lactate, and TNF-α enhanced the mRNA expression of KL, and suppressed the mRNA expression of the TERT and TRADD genes. Thus, MLT confers potent protection against NaAsO2- induced tissue injury and oxidative stress.


Assuntos
Envelhecimento/efeitos dos fármacos , Arsenitos/antagonistas & inibidores , Melatonina/farmacologia , Compostos de Sódio/antagonistas & inibidores , Animais , Arsenitos/farmacologia , Masculino , Camundongos , Compostos de Sódio/farmacologia
2.
Mol Cell Biochem ; 441(1-2): 21-33, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28887692

RESUMO

Aging is a natural process in living organisms that is defined by some molecular and cellular changes with time. Various causes such as mitochondrial DNA aberrations, aggregation of proteins, telomere shortening, and oxidative stress have an influential role in aging of the cells. Natural antioxidants are compounds that are potent to protect the body from detrimental effects of molecules such as free radicals. The aim of this study was to evaluate the anti-aging properties of ellagic acid (EA) and silybin (SIL), as natural antioxidant compounds on rat embryonic fibroblast (REF) cells. These cells were pre-incubated with EA and SIL, thereafter were exposed to hydrogen peroxide (H2O2). Then, the cell viability, SA-ß-GAL activity, distribution of cell cycle, NF-κB, and mitochondrial complex I, II/IV enzyme activity were measured. The results of this study revealed the protective effects of EA and SIL in H2O2-treated REF cells, which confirm the previous achieved data on antioxidant and anti-inflammatory characteristics of EA and SIL against H2O2 in the treated REF cells. However, more new in vivo experiments are required to discover the anti-aging effects and mechanism of action of such compounds.


Assuntos
Senescência Celular/efeitos dos fármacos , Ácido Elágico/farmacologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Silimarina/farmacologia , Animais , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Ratos , Silibina
3.
Arch Toxicol ; 91(7): 2577-2597, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516248

RESUMO

Epigenotoxicology is an emerging field of study that investigates the non-genotoxic epigenetic effects of environmental toxicants resulting in alteration of normal gene expression and disruption of cell function. Recent findings on the role of toxicant-induced epigenetic modifications in the development of degenerative diseases have opened up a promising research direction to explore epigenetic therapy approaches and related prognostic biomarkers. In this review, we presented comprehensive data on epigenetic alterations identified in various diseases, including cancer, autoimmune disorders, pulmonary conditions as well as cardiovascular, gastrointestinal and bone disease. Although data on abnormalities of DNA methylation and their role in the development of diseases are abundant, less is known about the impact of histone modifications and microRNA expressions. Further, we discussed the effects of selected common environmental toxicants on epigenetic modifications and their association with particular abnormalities. A number of different environmental toxicants have been identified for their role in aberrant DNA methylation, histone modifications, and microRNA expression. Such epigenetic effects were shown to be tissue-type specific and highly associated with the level and duration of exposure. Finally, we described present and future therapeutic strategies, including medicines and dietary compounds for combating the toxicant-induced epigenetic alterations. There are currently seven histone deacetylase inhibitors and two DNA methyltransferase inhibitors approved for clinical use and many other promising candidates are in preclinical and clinical testing. Dietary compounds are thought to be the effective and safe strategies for treating and prevention of epigenetic pathophysiological conditions. Still more concentrated epigenetic researches are required for evaluation of chemical toxicity and identifying the causal association between key epigenetic alteration and disease.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Metilação de DNA/efeitos dos fármacos , Dieta , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/epidemiologia , Neoplasias/genética
4.
Turk J Pharm Sci ; 14(2): 201-206, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32454614

RESUMO

Eugenol is a volatile phenolic constituent of clove essential oil obtained from Eugenia caryophyllata buds and leaves. It is a functional ingredient of numerous products which have been used in the pharmaceutical, food and cosmetic industry in restricted concentrations. Its derivatives have been used in medicine as a local antiseptic and anesthetic. The wide range of eugenol activities includes antimicrobial, anti-inflammatory, analgesic and antioxidant. Although eugenol is considered safe as a product, due to the vast range of different applications and extensive use, there has been a great concern about its toxicity in recent years. However, studies about cytotoxicity and genotoxicity of eugenol are very limited and controversial. The pharmacological and toxicological properties of eugenol will be discussed in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA