Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(46): e2211197119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343249

RESUMO

Advances in medicine and biotechnology rely on a deep understanding of biological processes. Despite the increasingly available types and amounts of omics data, significant knowledge gaps remain, with current approaches to identify and curate missing annotations being limited to a set of already known reactions. Here, we introduce Network Integrated Computational Explorer for Gap Annotation of Metabolism (NICEgame), a workflow to identify and curate nonannotated metabolic functions in genomes using the ATLAS of Biochemistry and genome-scale metabolic models (GEMs). To resolve gaps in GEMs, NICEgame provides alternative sets of known and hypothetical reactions, assesses their thermodynamic feasibility, and suggests candidate genes to catalyze these reactions. We identified metabolic gaps and applied NICEgame in the latest GEM of Escherichia coli, iML1515, and enhanced the E. coli genome annotation by resolving 47% of these gaps. NICEgame, applicable to any GEM and functioning from open-source software, should thus enhance all GEM-based predictions and subsequent biotechnological and biomedical applications.


Assuntos
Escherichia coli , Redes e Vias Metabólicas , Escherichia coli/genética , Escherichia coli/metabolismo , Fluxo de Trabalho , Software , Genoma , Modelos Biológicos
2.
Curr Opin Biotechnol ; 76: 102722, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35483185

RESUMO

The metabolic engineering community relies on computational methods for pathway design to produce important small molecules in microbial hosts. Metabolic network databases are continuously curated and updated with known and novel reactions that expand the known biochemistry based on different sets of enzymatic reaction rules. To address the complexity of the metabolic networks, elaborate methods were developed to transform them into computable graphs, navigate them, and construct the best possible pathways. However, the recent experimental research points to the new challenges and opportunities for the computational pathway design. Here, we review the most recent advances, especially in the last two years, in computational discovery of new pathways and their prospects for expanding metabolic capabilities. We draw attention to the potential ways of improvement for pathway design algorithms, including the expansion of Design-Build-Test-Learn cycle to novel compounds and reactions and the standardization for the reaction rules and metabolic reaction databases.


Assuntos
Fenômenos Bioquímicos , Redes e Vias Metabólicas , Algoritmos , Fenômenos Fisiológicos Celulares , Biologia Computacional , Engenharia Metabólica
3.
Metab Eng ; 72: 259-274, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35381376

RESUMO

Synthetic biology and metabolic engineering rely on computational search tools for predictions of novel biosynthetic pathways to industrially important compounds, many of which are derived from aromatic amino acids. Pathway search tools vary in their scope of covered reactions and compounds, as well as in metrics for ranking and evaluation. In this work, we present a new computational resource called ARBRE: Aromatic compounds RetroBiosynthesis Repository and Explorer. It consists of a comprehensive biochemical reaction network centered around aromatic amino acid biosynthesis and a computational toolbox for navigating this network. ARBRE encompasses over 33'000 known and 390'000 novel reactions predicted with generalized enzymatic reactions rules and over 74'000 compounds, of which 19'000 are known to biochemical databases and 55'000 only to PubChem. Over 1'000 molecules that were solely part of the PubChem database before and were previously impossible to integrate into a biochemical network are included into the ARBRE reaction network by assigning enzymatic reactions. ARBRE can be applied for pathway search, enzyme annotation, pathway ranking, visualization, and network expansion around known biochemical pathways and products of lignin degradation to predict valuable compound derivations. In line with the standards of open science, we have made the toolbox freely available to the scientific community on git (https://github.com/EPFL-LCSB/ARBRE) and we provide the web-version at http://lcsb-databases.epfl.ch/arbre/. We envision that ARBRE will provide the community with a new computational resource and comprehensive search tool to predict and rank pathways towards industrially important aromatic compounds.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Aminoácidos Aromáticos/genética , Vias Biossintéticas , Biologia Sintética
4.
Nat Commun ; 13(1): 1560, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322036

RESUMO

Metabolic "dark matter" describes currently unknown metabolic processes, which form a blind spot in our general understanding of metabolism and slow down the development of biosynthetic cell factories and naturally derived pharmaceuticals. Mapping the dark matter of metabolism remains an open challenge that can be addressed globally and systematically by existing computational solutions. In this work, we use 489 generalized enzymatic reaction rules to map both known and unknown metabolic processes around a biochemical database of 1.5 million biological compounds. We predict over 5 million reactions and integrate nearly 2 million naturally and synthetically-derived compounds into the global network of biochemical knowledge, named ATLASx. ATLASx is available to researchers as a powerful online platform that supports the prediction and analysis of biochemical pathways and evaluates the biochemical vicinity of molecule classes ( https://lcsb-databases.epfl.ch/Atlas2 ).


Assuntos
Fenômenos Bioquímicos , Redes e Vias Metabólicas , Fenômenos Fisiológicos Celulares , Bases de Dados Factuais
5.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34340747

RESUMO

The discovery of a drug requires over a decade of intensive research and financial investments - and still has a high risk of failure. To reduce this burden, we developed the NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their enzymatic metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that identifies reactive similarities between drug-drug and drug-metabolite pairs. We validated the application, scope, and performance of NICEdrug.ch over similar methods in the field on golden standard datasets describing drugs and metabolites sharing reactivity, drug toxicities, and drug targets. We use NICEdrug.ch to evaluate inhibition and toxicity by the anticancer drug 5-fluorouracil, and suggest avenues to alleviate its side effects. We propose shikimate 3-phosphate for targeting liver-stage malaria with minimal impact on the human host cell. Finally, NICEdrug.ch suggests over 1300 candidate drugs and food molecules to target COVID-19 and explains their inhibitory mechanism for further experimental screening. The NICEdrug.ch database is accessible online to systematically identify the reactivity of small molecules and druggable enzymes with practical applications in lead discovery and drug repurposing.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Antivirais/química , Antivirais/farmacologia , Bases de Dados de Produtos Farmacêuticos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Fluoruracila/química , Fluoruracila/metabolismo , Humanos , Preparações Farmacêuticas/química , Fluxo de Trabalho , Tratamento Farmacológico da COVID-19
6.
Nat Commun ; 12(1): 1760, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741955

RESUMO

Plant natural products (PNPs) and their derivatives are important but underexplored sources of pharmaceutical molecules. To access this untapped potential, the reconstitution of heterologous PNP biosynthesis pathways in engineered microbes provides a valuable starting point to explore and produce novel PNP derivatives. Here, we introduce a computational workflow to systematically screen the biochemical vicinity of a biosynthetic pathway for pharmaceutical compounds that could be produced by derivatizing pathway intermediates. We apply our workflow to the biosynthetic pathway of noscapine, a benzylisoquinoline alkaloid (BIA) with a long history of medicinal use. Our workflow identifies pathways and enzyme candidates for the production of (S)-tetrahydropalmatine, a known analgesic and anxiolytic, and three additional derivatives. We then construct pathways for these compounds in yeast, resulting in platforms for de novo biosynthesis of BIA derivatives and demonstrating the value of cheminformatic tools to predict reactions, pathways, and enzymes in synthetic biology and metabolic engineering.


Assuntos
Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Biologia Computacional/métodos , Engenharia Metabólica/métodos , Noscapina/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides/biossíntese , Benzilisoquinolinas/metabolismo , Noscapina/química , Plantas/genética , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Software
7.
ACS Synth Biol ; 9(6): 1479-1482, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421310

RESUMO

The ATLAS of Biochemistry is a repository of both known and novel predicted biochemical reactions between biological compounds listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG). ATLAS was originally compiled based on KEGG 2015, though the number of KEGG reactions has increased by almost 20 percent since then. Here, we present an updated version of ATLAS created from KEGG 2018 using an increased set of generalized reaction rules. Furthermore, we improved the accuracy of the enzymes that are predicted for catalyzing novel reactions. ATLAS now contains ∼150 000 reactions, out of which 96% are novel. In this report, we present detailed statistics on the updated ATLAS and highlight the improvements with regard to the previous version. Most importantly, 107 reactions predicted in the original ATLAS are now known to KEGG, which validates the predictive power of our approach. The updated ATLAS is available at https://lcsb-databases.epfl.ch/atlas.


Assuntos
Bases de Dados Factuais , Enzimas/metabolismo , Redes e Vias Metabólicas
8.
Proc Natl Acad Sci U S A ; 116(15): 7298-7307, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910961

RESUMO

Thousands of biochemical reactions with characterized activities are "orphan," meaning they cannot be assigned to a specific enzyme, leaving gaps in metabolic pathways. Novel reactions predicted by pathway-generation tools also lack associated sequences, limiting protein engineering applications. Associating orphan and novel reactions with known biochemistry and suggesting enzymes to catalyze them is a daunting problem. We propose the method BridgIT to identify candidate genes and catalyzing proteins for these reactions. This method introduces information about the enzyme binding pocket into reaction-similarity comparisons. BridgIT assesses the similarity of two reactions, one orphan and one well-characterized nonorphan reaction, using their substrate reactive sites, their surrounding structures, and the structures of the generated products to suggest enzymes that catalyze the most-similar nonorphan reactions as candidates for also catalyzing the orphan ones. We performed two large-scale validation studies to test BridgIT predictions against experimental biochemical evidence. For the 234 orphan reactions from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 2011 (a comprehensive enzymatic-reaction database) that became nonorphan in KEGG 2018, BridgIT predicted the exact or a highly related enzyme for 211 of them. Moreover, for 334 of 379 novel reactions in 2014 that were later cataloged in KEGG 2018, BridgIT predicted the exact or highly similar enzymes. BridgIT requires knowledge about only four connecting bonds around the atoms of the reactive sites to correctly annotate proteins for 93% of analyzed enzymatic reactions. Increasing to seven connecting bonds allowed for the accurate identification of a sequence for nearly all known enzymatic reactions.


Assuntos
Bases de Dados de Proteínas , Enzimas , Anotação de Sequência Molecular , Análise de Sequência de Proteína , Sítios de Ligação , Enzimas/química , Enzimas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA