Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(15): 3739-3751, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33826319

RESUMO

Proteins with BAR domains function to bind to and remodel biological membranes, where the dimerization of BAR domains is a key step in this function. These domains can dimerize in solution or after localizing to the membrane surface. Here, we characterize the binding thermodynamics of homodimerization between the LSP1 BAR domain proteins in solution, using molecular dynamics (MD) simulations. By combining the MARTINI coarse-grained protein models with enhanced sampling through metadynamics, we construct a two-dimensional free energy surface quantifying the bound versus unbound ensembles as a function of two distance variables. With this methodology, our simulations can simultaneously characterize the structures and relative stabilities of a range of sampled dimers, portraying a heterogeneous and extraordinarily stable bound ensemble, where the proper crystal structure dimer is the most stable in a 100 mM NaCl solution. Nonspecific dimers that are sampled involve contacts that are consistent with experimental structures of higher-order oligomers formed by the LSP1 BAR domain. Because the BAR dimers and oligomers can assemble on membranes, we characterize the relative alignment of the known membrane binding patches, finding that only the specific dimer is aligned to form strong interactions with the membrane. Hence, we would predict a strong selection of the specific dimer in binding to or assembling when on the membrane. Establishing the pairwise stabilities of homodimer contacts is difficult experimentally when the proteins form stable oligomers, but through the method used here, we can isolate these contacts, providing a foundation to study the same interactions on the membrane.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Membrana Celular/metabolismo , Dimerização , Proteínas/metabolismo , Termodinâmica
2.
Biochim Biophys Acta Biomembr ; 1860(5): 1057-1068, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29317202

RESUMO

The interaction between cardiolipin (CL) and cytochrome c (cyt-c) results in a gain of function of peroxidase activity by cyt-c. Despite intensive research, disagreements on nature and molecular details of this interaction remain. In particular, it is still not known how the interaction triggers the onset of apoptosis. Enzymatic characterization of peroxidase activity has highlighted the need for a critical threshold concentration of CL, a finding of profound physiological relevance in vivo. Using solution NMR, fluorescence spectroscopy, and in silico modeling approaches we here confirm that full binding of cyt-c to the membrane requires a CL:cyt-c threshold ratio of 5:1. Among three binding sites, the simultaneous binding of two sites, at two opposing sides of the heme, provides a mechanism to open the heme crevice to substrates. This results in "productive binding" in which cyt-c then sequesters CL, inducing curvature in the membrane. Membrane perturbation along with lipid peroxidation, due to interactions of heme/CL acyl chains, initiates the next step in the apoptotic pathway of making the membrane leaky. The third CL binding site while allowing interaction with the membrane, does not cluster CL or induce subsequent events, making this interaction "unproductive".


Assuntos
Cardiolipinas/metabolismo , Citocromos c/metabolismo , Membranas/metabolismo , Peroxidase/metabolismo , Sequência de Aminoácidos , Animais , Cardiolipinas/química , Citocromos c/química , Citocromos c/genética , Cavalos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Peroxidase/química , Peroxidase/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Relação Estrutura-Atividade , Lipossomas Unilamelares
3.
Nat Commun ; 8(1): 2122, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242535

RESUMO

Cross-presentation is a critical function of dendritic cells (DCs) required for induction of antitumor immune responses and success of cancer immunotherapy. It is established that tumor-associated DCs are defective in their ability to cross-present antigens. However, the mechanisms driving these defects are still unknown. We find that impaired cross-presentation in DCs is largely associated with defect in trafficking of peptide-MHC class I (pMHC) complexes to the cell surface. DCs in tumor-bearing hosts accumulate lipid bodies (LB) containing electrophilic oxidatively truncated (ox-tr) lipids. These ox-tr-LB, but not LB present in control DCs, covalently bind to chaperone heat shock protein 70. This interaction prevents the translocation of pMHC to cell surface by causing the accumulation of pMHC inside late endosomes/lysosomes. As a result, tumor-associated DCs are no longer able to stimulate adequate CD8 T cells responses. In conclusion, this study demonstrates a mechanism regulating cross-presentation in cancer and suggests potential therapeutic avenues.


Assuntos
Antígenos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Gotículas Lipídicas/imunologia , Lipídeos/imunologia , Neoplasias/imunologia , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Feminino , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Gotículas Lipídicas/metabolismo , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica
4.
Artigo em Inglês | MEDLINE | ID: mdl-27498292

RESUMO

Since its discovery 75years ago, a wealth of knowledge has accumulated on the role of cardiolipin, the hallmark phospholipid of mitochondria, in bioenergetics and particularly on the structural organization of the inner mitochondrial membrane. A surge of interest in this anionic doubly-charged tetra-acylated lipid found in both prokaryotes and mitochondria has emerged based on its newly discovered signaling functions. Cardiolipin displays organ, tissue, cellular and transmembrane distribution asymmetries. A collapse of the membrane asymmetry represents a pro-mitophageal mechanism whereby externalized cardiolipin acts as an "eat-me" signal. Oxidation of cardiolipin's polyunsaturated acyl chains - catalyzed by cardiolipin complexes with cytochrome c. - is a pro-apoptotic signal. The messaging functions of myriads of cardiolipin species and their oxidation products are now being recognized as important intracellular and extracellular signals for innate and adaptive immune systems. This newly developing field of research exploring cardiolipin signaling is the main subject of this review. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Assuntos
Cardiolipinas/metabolismo , Transdução de Sinais/fisiologia , Animais , Citocromos c/metabolismo , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Fosfolipídeos/metabolismo
5.
ACS Chem Biol ; 12(1): 265-281, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27982579

RESUMO

Cardioipins (CLs) are unique tetra-acylated phospholipids of mitochondria and define the bioenergetics and regulatory functions of these organelles. An unresolved paradox is the high uniformity of CL molecular species (tetra-linoleoyl-CL) in the heart, liver, and skeletal muscles-in contrast to their high diversification in the brain. Here, we combined liquid chromatography-mass-spectrometry-based phospholipidomics with genetic and nutritional manipulations to explore CLs' biosynthetic vs postsynthetic remodeling processes in S. cerevisiae yeast cells. By applying the differential phospholipidomics analysis, we evaluated the contribution of Cld1 (CL-specific phospholipase A) and Taz1 (acyl-transferase) as the major regulatory mechanisms of the remodeling process. We further established that nutritional "pressure" by high levels of free fatty acids triggered a massive synthesis of homoacylated molecular species in all classes of phospholipids, resulting in the preponderance of the respective homoacylated CLs. We found that changes in molecular speciation of CLs induced by exogenous C18-fatty acids (C18:1 and C18:2) in wild-type (wt) cells did not occur in any of the remodeling mutant cells, including cld1Δ, taz1Δ, and cld1Δtaz1Δ. Interestingly, molecular speciation of CLs in wt and double mutant cells cld1Δtaz1Δ was markedly different. Given that the bioenergetics functions are preserved in the double mutant, this suggests that the accumulated MLCL-rather than the changed CL speciation-are the likely major contributors to the mitochondrial dysfunction in taz1Δ mutant cells (also characteristic of Barth syndrome). Biochemical studies of Cld1 specificity and computer modeling confirmed the hydrolytic selectivity of the enzyme toward C16-CL substrates and the preservation of C18:1-containing CL species.


Assuntos
Cardiolipinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Acilação , Aciltransferases/metabolismo , Cardiolipinas/biossíntese , Ácidos Graxos/metabolismo , Hidrolases/química , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis , Fosfolipases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
6.
Nat Chem Biol ; 13(1): 81-90, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842066

RESUMO

Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.


Assuntos
Ácido Araquidônico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfolipídeos/metabolismo , Animais , Ácido Araquidônico/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Linhagem Celular , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/deficiência , Coenzima A Ligases/metabolismo , Ácidos Graxos Insaturados/antagonistas & inibidores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Elife ; 4: e07485, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26609809

RESUMO

Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD-LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat.


Assuntos
Adipócitos Marrons/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Gotículas Lipídicas/metabolismo , Ácidos Fosfatídicos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Sítios de Ligação , Linhagem Celular , Camundongos , Ligação Proteica , Estrutura Secundária de Proteína
8.
Sci Signal ; 8(395): ra95, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26396268

RESUMO

Among the distinct molecular signatures present in the mitochondrion is the tetra-acylated anionic phospholipid cardiolipin, a lipid also present in primordial, single-cell bacterial ancestors of mitochondria and multiple bacterial species today. Cardiolipin is normally localized to the inner mitochondrial membrane; however, when cardiolipin becomes externalized to the surface of dysregulated mitochondria, it promotes inflammasome activation and stimulates the elimination of damaged or nonfunctional mitochondria by mitophagy. Given the immunogenicity of mitochondrial and bacterial membranes that are released during sterile and pathogen-induced trauma, we hypothesized that cardiolipins might function as "eat me" signals for professional phagocytes. In experiments with macrophage cell lines and primary macrophages, we found that membranes with mitochondrial or bacterial cardiolipins on their surface were engulfed through phagocytosis, which depended on the scavenger receptor CD36. Distinct from this process, the copresentation of cardiolipin with the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide dampened TLR4-stimulated production of cytokines. These data suggest that externalized, extracellular cardiolipins play a dual role in host-host and host-pathogen interactions by promoting phagocytosis and attenuating inflammatory immune responses.


Assuntos
Antígenos CD36/imunologia , Cardiolipinas/imunologia , Macrófagos/imunologia , Fagocitose , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Linhagem Celular Tumoral , Humanos
9.
Biophys J ; 109(6): 1282-94, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26300339

RESUMO

Cardiolipins (CL) represent unique phospholipids of bacteria and eukaryotic mitochondria with four acyl chains and two phosphate groups that have been implicated in numerous functions from energy metabolism to apoptosis. Many proteins are known to interact with CL, and several cocrystal structures of protein-CL complexes exist. In this work, we describe the collection of the first systematic and, to the best of our knowledge, the comprehensive gold standard data set of all known CL-binding proteins. There are 62 proteins in this data set, 21 of which have nonredundant crystal structures with bound CL molecules available. Using binding patch analysis of amino acid frequencies, secondary structures and loop supersecondary structures considering phosphate and acyl chain binding regions together and separately, we gained a detailed understanding of the general structural and dynamic features involved in CL binding to proteins. Exhaustive docking of CL to all known structures of proteins experimentally shown to interact with CL demonstrated the validity of the docking approach, and provides a rich source of information for experimentalists who may wish to validate predictions.


Assuntos
Cardiolipinas/metabolismo , Proteínas/metabolismo , Sítios de Ligação , Cardiolipinas/química , Cardiolipinas/genética , Bases de Dados de Compostos Químicos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , Proteínas/química
10.
Antioxid Redox Signal ; 22(18): 1667-80, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25566681

RESUMO

SIGNIFICANCE: An ancient anionic phospholipid, cardiolipin (CL), ubiquitously present in prokaryotic and eukaryotic membranes, is essential for several structural and functional purposes. RECENT ADVANCES: The emerging role of CLs in signaling has become the focus of many studies. CRITICAL ISSUES: In this work, we describe two major pathways through which mitochondrial CLs may fulfill the signaling functions via utilization of their (i) asymmetric distribution across membranes and translocations, leading to the surface externalization and (ii) ability to undergo oxidation reactions to yield the signature products recognizable by the executionary machinery of cells. FUTURE DIRECTIONS: We present a concept that CLs and their oxidation/hydrolysis products constitute a rich communication language utilized by mitochondria of eukaryotic cells for diversified regulation of cell physiology and metabolism as well as for inter-cellular interactions.


Assuntos
Cardiolipinas/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Transdução de Sinais , Animais , Apoptose , Cardiolipinas/química , Humanos , Hidrólise , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Células Procarióticas/química , Células Procarióticas/metabolismo
11.
Free Radic Biol Med ; 76: 53-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25110833

RESUMO

Lipid droplets (LDs) are ubiquitous and physiologically active organelles regulating storage and mobilization of lipids in response to metabolic demands. Among the constituent LD neutral lipids, such as triacylglycerols, cholesterol esters, and free fatty acids, oxidizable polyunsaturated molecular species may be quite abundant, yet the structural and functional roles of their oxidation products have not been studied. Our previous work documented the presence of these peroxidized species in LDs. Assuming that hydrophilic oxygen-containing functionalities may markedly change the hydrophobic/hydrophilic molecular balance, here we utilized computational modeling to test the hypothesis that lipid peroxidation causes redistribution of lipids between the highly hydrophobic core and the polar surface (phospho)lipid monolayer-the area enriched with integrated enzymatic machinery. Using quantitative liquid chromatography/mass spectrometry, we characterized molecular speciation of oxTAGs in LDs of dendritic cells in cancer and hypoxic trophoblasts cells as two cellular models associated with dyslipidemia. Among the many types of oxidized lipids identified, we found that oxidatively truncated forms and hydroxyl derivatives of TAGs were the prevailing oxidized lipid species in LDs in both cell types. Using coarse-grained molecular dynamics (CG-MD) simulations we established that lipid oxidation changed their partitioning whereby oxidized lipids migrated into the outer monolayer of the LD, where they can affect essential metabolic pathways and undergo conversions, possibly leading to the formation of oxygenated lipid mediators.


Assuntos
Neoplasias do Colo/metabolismo , Gotículas Lipídicas/química , Linfoma/metabolismo , Simulação de Dinâmica Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triglicerídeos/química , Cromatografia Líquida , Neoplasias do Colo/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/análise , Linfoma/patologia , Oxirredução , Trofoblastos , Células Tumorais Cultivadas
12.
Nat Chem ; 6(6): 542-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24848241

RESUMO

The central role of mitochondria in metabolic pathways and in cell-death mechanisms requires sophisticated signalling systems. Essential in this signalling process is an array of lipid mediators derived from polyunsaturated fatty acids. However, the molecular machinery for the production of oxygenated polyunsaturated fatty acids is localized in the cytosol and their biosynthesis has not been identified in mitochondria. Here we report that a range of diversified polyunsaturated molecular species derived from a mitochondria-specific phospholipid, cardiolipin (CL), is oxidized by the intermembrane-space haemoprotein, cytochrome c. We show that a number of oxygenated CL species undergo phospholipase A2-catalysed hydrolysis and thus generate multiple oxygenated fatty acids, including well-known lipid mediators. This represents a new biosynthetic pathway for lipid mediators. We demonstrate that this pathway, which includes the oxidation of polyunsaturated CLs and accumulation of their hydrolysis products (oxygenated linoleic, arachidonic acids and monolysocardiolipins), is activated in vivo after acute tissue injury.


Assuntos
Encéfalo/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Intestino Delgado/metabolismo , Mitocôndrias/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/efeitos da radiação , Cálcio/metabolismo , Cromatografia Líquida , Citocromos c/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Fosfolipases A2 do Grupo IV/metabolismo , Peróxido de Hidrogênio/farmacologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/lesões , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Oxidantes/farmacologia , Oxirredução , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Irradiação Corporal Total
13.
J Immunol ; 192(6): 2920-31, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24554775

RESUMO

Cross-presentation is one of the main features of dendritic cells (DCs), which is critically important for the development of spontaneous and therapy-inducible antitumor immune responses. Patients, at early stages of cancer, have normal presence of DCs. However, the difficulties in the development of antitumor responses in patients with low tumor burden raised the question of the mechanisms of DC dysfunction. In this study, we found that, in differentiated DCs, tumor-derived factors blocked the cross-presentation of exogenous Ags without inhibiting the Ag presentation of endogenous protein or peptides. This effect was caused by intracellular accumulation of different types of oxidized neutral lipids: triglycerides, cholesterol esters, and fatty acids. In contrast, the accumulation of nonoxidized lipids did not affect cross-presentation. Oxidized lipids blocked cross-presentation by reducing the expression of peptide-MHC class I complexes on the cell surface. Thus, this study suggests the novel role of oxidized lipids in the regulation of cross-presentation.


Assuntos
Apresentação de Antígeno/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Lipídeos/imunologia , Neoplasias/imunologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/farmacologia , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Neoplasias/metabolismo , Neoplasias/patologia , Ovalbumina/imunologia , Oxirredução , Fragmentos de Peptídeos/imunologia
14.
Chem Phys Lipids ; 178: 1-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24378240

RESUMO

Cardiolipins (CLs) are important biologically for their unique role in biomembranes that couple phosphorylation and electron transport like bacterial plasma membranes, chromatophores, chloroplasts and mitochondria. CLs are often tightly coupled to proteins involved in oxidative phosphorylation. The first step in understanding the interaction of CL with proteins is to obtain the pure CL structure, and the structure of mixtures of CL with other lipids. In this work we use a variety of techniques to characterize the fluid phase structure, material properties and thermodynamics of mixtures of dimyristoylphosphatidylcholine (DMPC) with tetramyristoylcardiolipin (TMCL), both with 14-carbon chains, at several mole percentages. X-ray diffuse scattering was used to determine structure, including bilayer thickness and area/lipid, the bending modulus, KC, and SXray, a measure of chain orientational order. Our results reveal that TMCL thickens DMPC bilayers at all mole percentages, with a total increase of ∼6 Å in pure TMCL, and increases AL from 64 Å(2) (DMPC at 35 °C) to 109 Å(2) (TMCL at 50 °C). KC increases by ∼50%, indicating that TMCL stiffens DMPC membranes. TMCL also orders DMPC chains by a factor of ∼2 for pure TMCL. Coarse grain molecular dynamics simulations confirm the experimental thickening of 2 Å for 20mol% TMCL and locate the TMCL headgroups near the glycerol-carbonyl region of DMPC; i.e., they are sequestered below the DMPC phosphocholine headgroup. Our results suggest that TMCL plays a role similar to cholesterol in that it thickens and stiffens DMPC membranes, orders chains, and is positioned under the umbrella of the PC headgroup. CL may be necessary for hydrophobic matching to inner mitochondrial membrane proteins. Differential scanning calorimetry, SXray and CGMD simulations all suggest that TMCL does not form domains within the DMPC bilayers. We also determined the gel phase structure of TMCL, which surprisingly displays diffuse X-ray scattering, like a fluid phase lipid. AL=40.8 Å(2) for the ½TMCL gel phase, smaller than the DMPC gel phase with AL=47.2 Å(2), but similar to AL of DLPE=41 Å(2), consistent with untilted chains in gel phase TMCL.


Assuntos
Cardiolipinas/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Dimiristoilfosfatidilcolina/metabolismo , Géis/química , Bicamadas Lipídicas/metabolismo , Conformação Molecular , Termodinâmica , Temperatura de Transição
15.
Nat Cell Biol ; 15(10): 1197-1205, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24036476

RESUMO

Recognition of injured mitochondria for degradation by macroautophagy is essential for cellular health, but the mechanisms remain poorly understood. Cardiolipin is an inner mitochondrial membrane phospholipid. We found that rotenone, staurosporine, 6-hydroxydopamine and other pro-mitophagy stimuli caused externalization of cardiolipin to the mitochondrial surface in primary cortical neurons and SH-SY5Y cells. RNAi knockdown of cardiolipin synthase or of phospholipid scramblase-3, which transports cardiolipin to the outer mitochondrial membrane, decreased the delivery of mitochondria to autophagosomes. Furthermore, we found that the autophagy protein microtubule-associated-protein-1 light chain 3 (LC3), which mediates both autophagosome formation and cargo recognition, contains cardiolipin-binding sites important for the engulfment of mitochondria by the autophagic system. Mutation of LC3 residues predicted as cardiolipin-interaction sites by computational modelling inhibited its participation in mitophagy. These data indicate that redistribution of cardiolipin serves as an 'eat-me' signal for the elimination of damaged mitochondria from neuronal cells.


Assuntos
Cardiolipinas/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Autofagia/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Cardiolipinas/genética , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Oxidopamina/farmacologia , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Rotenona/farmacologia , Desacopladores/farmacologia
16.
J Biol Chem ; 288(1): 111-21, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23150663

RESUMO

The nucleoside diphosphate kinase Nm23-H4/NDPK-D forms symmetrical hexameric complexes in the mitochondrial intermembrane space with phosphotransfer activity using mitochondrial ATP to regenerate nucleoside triphosphates. We demonstrate the complex formation between Nm23-H4 and mitochondrial GTPase OPA1 in rat liver, suggesting its involvement in local and direct GTP delivery. Similar to OPA1, Nm23-H4 is further known to strongly bind in vitro to anionic phospholipids, mainly cardiolipin, and in vivo to the inner mitochondrial membrane. We show here that such protein-lipid complexes inhibit nucleoside diphosphate kinase activity but are necessary for another function of Nm23-H4, selective intermembrane lipid transfer. Mitochondrial lipid distribution was analyzed by liquid chromatography-mass spectrometry using HeLa cells expressing either wild-type Nm23-H4 or a membrane binding-deficient mutant at a site predicted based on molecular modeling to be crucial for cardiolipin binding and transfer mechanism. We found that wild type, but not the mutant enzyme, selectively increased the content of cardiolipin in the outer mitochondrial membrane, but the distribution of other more abundant phospholipids (e.g. phosphatidylcholine) remained unchanged. HeLa cells expressing the wild-type enzyme showed increased accumulation of Bax in mitochondria and were sensitized to rotenone-induced apoptosis as revealed by stimulated release of cytochrome c into the cytosol, elevated caspase 3/7 activity, and increased annexin V binding. Based on these data and molecular modeling, we propose that Nm23-H4 acts as a lipid-dependent mitochondrial switch with dual function in phosphotransfer serving local GTP supply and cardiolipin transfer for apoptotic signaling and putative other functions.


Assuntos
Cardiolipinas/fisiologia , Membranas Intracelulares/metabolismo , Lipídeos/química , Nucleosídeo Difosfato Quinase D/química , Nucleosídeo Difosfato Quinase D/fisiologia , Animais , Apoptose , Cardiolipinas/química , GTP Fosfo-Hidrolases/química , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Modelos Moleculares , Fosfolipídeos/química , Ligação Proteica , Conformação Proteica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...