Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(2)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418394

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is associated with a dismal prognosis. Immune checkpoint blockade (ICB) to induce antitumor activity in AML patients has yielded mixed results. Despite the pivotal role of B cells in antitumor immunity, a comprehensive assessment of B lymphocytes within AML's immunological microenvironment along with their interaction with ICB remains rather constrained. METHODS: We performed an extensive analysis that involved paired single-cell RNA and B-cell receptor (BCR) sequencing on 52 bone marrow aspirate samples. These samples included 6 from healthy bone marrow donors (normal), 24 from newly diagnosed AML patients (NewlyDx), and 22 from 8 relapsed or refractory AML patients (RelRef), who underwent assessment both before and after azacitidine/nivolumab treatment. RESULTS: We delineated nine distinct subtypes of B cell lineage in the bone marrow. AML patients exhibited reduced nascent B cell subgroups but increased differentiated B cells compared with healthy controls. The limited diversity of BCR profiles and extensive somatic hypermutation indicated antigen-driven affinity maturation within the tumor microenvironment of RelRef patients. We established a strong connection between the activation or stress status of naïve and memory B cells, as indicated by AP-1 activity, and their differentiation state. Remarkably, atypical memory B cells functioned as specialized antigen-presenting cells closely interacting with AML malignant cells, correlating with AML stemness and worse clinical outcomes. In the AML microenvironment, plasma cells demonstrated advanced differentiation and heightened activity. Notably, the clinical response to ICB was associated with B cell clonal expansion and plasma cell function. CONCLUSIONS: Our findings establish a comprehensive framework for profiling the phenotypic diversity of the B cell lineage in AML patients, while also assessing the implications of immunotherapy. This will serve as a valuable guide for future inquiries into AML treatment strategies.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Medula Óssea , Azacitidina/uso terapêutico , Perfilação da Expressão Gênica , Linfócitos B , Microambiente Tumoral
2.
Front Oncol ; 12: 841117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402259

RESUMO

Immune effector cells (IEC) are a powerful and increasingly targeted tool, particularly for the control and eradication of malignant diseases. However, the infusion, expansion, and persistence of autologous or allogeneic IEC or engagement of endogenous immune cells can be associated with significant systemic multi-organ toxicities. Here we review the signs and symptoms, grading and pathophysiology of immune-related toxicities arising in the context of pediatric immunotherapies and haploidentical T cell replete Hematopoietic Cell Transplantation (HCT). Principles of management are discussed with particular focus on the intersection of these toxicities with the requirement for pediatric critical care level support.

3.
J Infect Dis ; 212 Suppl 2: S398-403, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25877553

RESUMO

In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Isoformas de Proteínas/imunologia , Vacinas de DNA/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Feminino , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Imunização Secundária/métodos , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos
4.
J Virol ; 89(2): 1205-17, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392212

RESUMO

UNLABELLED: The Ebola virus (EBOV) surface glycoprotein (GP1,2) mediates host cell attachment and fusion and is the primary target for host neutralizing antibodies. Expression of GP1,2 at high levels disrupts normal cell physiology, and EBOV uses an RNA-editing mechanism to regulate expression of the GP gene. In this study, we demonstrate that high levels of GP1,2 expression impair production and release of EBOV virus-like particles (VLPs) as well as infectivity of GP1,2-pseudotyped viruses. We further show that this effect is mediated through two mechanisms. First, high levels of GP1,2 expression reduce synthesis of other proteins needed for virus assembly. Second, viruses containing high levels of GP1,2 are intrinsically less infectious, possibly due to impaired receptor binding or endosomal processing. Importantly, proteolysis can rescue the infectivity of high-GP1,2-containing viruses. Taken together, our findings indicate that GP1,2 expression levels have a profound effect on factors that contribute to virus fitness and that RNA editing may be an important mechanism employed by EBOV to regulate GP1,2 expression in order to optimize virus production and infectivity. IMPORTANCE: The Ebola virus (EBOV), as well as other members of the Filoviridae family, causes severe hemorrhagic fever that is highly lethal, with up to 90% mortality. The EBOV surface glycoprotein (GP1,2) plays important roles in virus infection and pathogenesis, and its expression is tightly regulated by an RNA-editing mechanism during virus replication. Our study demonstrates that the level of GP1,2 expression profoundly affects virus particle production and release and uncovers a new mechanism by which Ebola virus infectivity is regulated by the level of GP1,2 expression. These findings extend our understanding of EBOV infection and replication in adaptation of host environments, which will aid the development of countermeasures against EBOV infection.


Assuntos
Ebolavirus/fisiologia , Regulação Viral da Expressão Gênica , Glicoproteínas de Membrana/biossíntese , Internalização do Vírus , Liberação de Vírus , Replicação Viral , Linhagem Celular , Humanos , Edição de RNA
5.
PLoS Pathog ; 8(12): e1003065, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271969

RESUMO

In addition to its surface glycoprotein (GP(1,2)), Ebola virus (EBOV) directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. The generation of secreted antigens has been studied in several viruses and suggested as a mechanism of host immune evasion through absorption of antibodies and interference with antibody-mediated clearance. However such a role has not been conclusively determined for the Ebola virus sGP. In this study, we immunized mice with DNA constructs expressing GP(1,2) and/or sGP, and demonstrate that sGP can efficiently compete for anti-GP(12) antibodies, but only from mice that have been immunized by sGP. We term this phenomenon "antigenic subversion", and propose a model whereby sGP redirects the host antibody response to focus on epitopes which it shares with membrane-bound GP(1,2), thereby allowing it to absorb anti-GP(1,2) antibodies. Unexpectedly, we found that sGP can also subvert a previously immunized host's anti-GP(1,2) response resulting in strong cross-reactivity with sGP. This finding is particularly relevant to EBOV vaccinology since it underscores the importance of eliciting robust immunity that is sufficient to rapidly clear an infection before antigenic subversion can occur. Antigenic subversion represents a novel virus escape strategy that likely helps EBOV evade host immunity, and may represent an important obstacle to EBOV vaccine design.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Evasão da Resposta Imune/imunologia , Animais , Reações Cruzadas/efeitos dos fármacos , Reações Cruzadas/genética , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/farmacologia , Ebolavirus/genética , Feminino , Células HeLa , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Evasão da Resposta Imune/genética , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
6.
Respir Res ; 10: 77, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19698107

RESUMO

BACKGROUND: A precise balance exists between the actions of endogenous glucocorticoids (GC) and retinoids to promote normal lung development, in particular during alveolarization. The mechanisms controlling this balance are largely unknown, but recent evidence suggests that midkine (MK), a retinoic acid-regulated, pro-angiogenic growth factor, may function as a critical regulator. The purpose of this study was to examine regulation of MK by GC and RA during postnatal alveolar formation in rats. METHODS: Newborn rats were treated with dexamethasone (DEX) and/or all-trans-retinoic acid (RA) during the first two weeks of life. Lung morphology was assessed by light microscopy and radial alveolar counts. MK mRNA and protein expression in response to different treatment were determined by Northern and Western blots. In addition, MK protein expression in cultured human alveolar type 2-like cells treated with DEX and RA was also determined. RESULTS: Lung histology confirmed that DEX treatment inhibited and RA treatment stimulated alveolar formation, whereas concurrent administration of RA with DEX prevented the DEX effects. During normal development, MK expression was maximal during the period of alveolarization from postnatal day 5 (PN5) to PN15. DEX treatment of rat pups decreased, and RA treatment increased lung MK expression, whereas concurrent DEX+RA treatment prevented the DEX-induced decrease in MK expression. Using human alveolar type 2 (AT2)-like cells differentiated in culture, we confirmed that DEX and cAMP decreased, and RA increased MK expression. CONCLUSION: We conclude that MK is expressed by AT2 cells, and is differentially regulated by corticosteroid and retinoid treatment in a manner consistent with hormonal effects on alveolarization during postnatal lung development.


Assuntos
Proteínas Angiogênicas/metabolismo , Citocinas/metabolismo , Dexametasona/farmacologia , Células Epiteliais/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Tretinoína/farmacologia , Fatores Etários , Proteínas Angiogênicas/genética , Animais , Animais Recém-Nascidos , Northern Blotting , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Citocinas/genética , Células Epiteliais/metabolismo , Humanos , Midkina , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
J Biol Chem ; 281(13): 8724-31, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16377626

RESUMO

The final stage of lung development in humans and rodents occurs principally after birth and involves the partitioning of the large primary saccules into smaller air spaces by the inward protrusion of septae derived from the walls of the saccules. Several observations in animal models implicate angiogenesis as critical to this process of alveolarization, but all anti-angiogenic treatments examined to date have resulted in endothelial cell (EC) death. We therefore targeted the function of platelet endothelial cell adhesion molecule, (PECAM-1), an EC surface molecule that promotes EC migration and has been implicated in in vivo angiogenesis. Administration of an anti-PECAM-1 antibody that inhibits EC migration, but not proliferation or survival in vitro, disrupted normal alveolar septation in neonatal rat pups without reducing EC content. Three-dimensional reconstruction of lungs showed that pups treated with a blocking PECAM-1 antibody had remodeling of more proximal branches resulting in large tubular airways. Subsequent studies in PECAM-1-null mice confirmed that the absence of PECAM-1 impaired murine alveolarization, without affecting EC content, proliferation, or survival. Further, cell migration was reduced in lung endothelial cells isolated from these mice. These data suggest that the loss of PECAM-1 function compromises postnatal lung development and provide evidence that inhibition of EC function, in contrast to a loss of viable EC, inhibits alveolarization.


Assuntos
Pulmão/crescimento & desenvolvimento , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Apoptose/genética , Técnicas de Cultura de Células , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Dexametasona/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/ultraestrutura , Imuno-Histoquímica , Injeções Intraperitoneais , Pulmão/irrigação sanguínea , Pulmão/ultraestrutura , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptor de TIE-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...