Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(51): 11651-11658, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38109055

RESUMO

Recent two-dimensional electronic spectroscopy experiments [Tilluck et al. J. Phys. Chem. Lett. 2021, 12 (39), 9677-9683] indicate the creation of coherent vibronic wavepackets in the first femtoseconds of hot carrier cooling in hexadecylamine-passivated CdSe quantum dots. Here we present a quantum chemical study of the origin of these coherences in a CdSe nanocrystal. We find that coherent wavepacket motions along vibrational coordinates with alkylamine character promote nonradiative relaxation through conical intersections between the exciton states of the inorganic core. Electronic excitations in the core are found to pass energy to the vibrations of the ligands via two distinct mechanisms: excitation of core phonon modes that are coupled to the ligand vibrations and direct excitation of ligand vibrations by delocalization of the exciton onto the ligands, both of which naturally arise within a photochemical framework based on many-electron potential energy surfaces. If these findings are demonstrated to be general, vibronic coherences may be leveraged to control photophysical outcomes in colloidal quantum dots.

2.
ACS Nano ; 17(11): 11054-11069, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37220308

RESUMO

The surface domains of self-assembled amphiphiles are well-organized and can perform many physical, chemical, and biological functions. Here, we present the significance of chiral surface domains of these self-assemblies in transferring chirality to achiral chromophores. These aspects are probed using l- and d-isomers of alkyl alanine amphiphiles which self-assemble in water as nanofibers, possessing a negative surface charge. When bound on these nanofibers, positively charged cyanine dyes (CY524 and CY600), each having two quinoline rings bridged by conjugated double bonds, show contrasting chiroptical features. Interestingly, CY600 displays a bisignated circular dichroic (CD) signal with mirror-image symmetry, while CY524 is CD silent. Molecular dynamics simulations reveal that the model cylindrical micelles (CM) derived from the two isomers exhibit surface chirality and the chromophores are buried as monomers in mirror-imaged pockets on their surfaces. The monomeric nature of template-bound chromophores and their binding reversibility are established by concentration- and temperature-dependent spectroscopies and calorimetry. On the CM, CY524 displays two equally populated conformers with opposite sense, whereas CY600 is present as two pairs of twisted conformers in each of which one is in excess, due to differences in weak dye-amphiphile hydrogen bonding interactions. Infrared and NMR spectroscopies support these findings. Reduction of electronic conjugation caused by the twist establishes the two quinoline rings as independent entities. On-resonance coupling between the transition dipoles of these units generates bisignated CD signals with mirror-image symmetry. The results presented herein provide insight on the little-known structurally induced chirality of achiral chromophores through transfer of chiral surface information.

3.
Nat Chem ; 14(11): 1286-1294, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36123451

RESUMO

The phycobilisome is an oligomeric chromoprotein complex that serves as the principal mid-visible light-harvesting system in cyanobacteria. Here we report the observation of excitation-energy-transfer pathways involving delocalized optical excitations of the bilin (linear tetrapyrrole) chromophores in intact phycobilisomes isolated from Fremyella diplosiphon. By using broadband multidimensional electronic spectroscopy with 6.7-fs laser pulses, we are able to follow the progress of excitation energy from the phycoerythrin disks at the ends of the phycobilisome's rods to the C-phycocyanin disks along their length in <600 fs. Oscillation maps show that coherent wavepacket motions prominently involving the hydrogen out-of-plane vibrations of the bilins mediate non-adiabatic relaxation of a manifold of vibronic exciton states. However, the charge-transfer character of the bilins in the allophycocyanin-containing segments localizes the excitations in the core of the phycobilisome, yielding a kinetic bottleneck that enables photoregulatory mechanisms to operate efficiently on the >10-ps timescale.


Assuntos
Luz , Ficobilissomas , Ficobilissomas/metabolismo , Transferência de Energia , Cinética
4.
J Phys Chem A ; 125(45): 9770-9784, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34747598

RESUMO

We report on the changes in the dual fluorescence of two cyanine dyes IR144 and IR140 as a function of viscosity and probe their internal conversion dynamics from S2 to S1 via their dependence on a femtosecond laser pulse chirp. Steady-state and time-resolved measurements performed in methanol, ethanol, propanol, ethylene glycol, and glycerol solutions are presented. Quantum calculations reveal the presence of three excited states responsible for the experimental observations. Above the first excited state, we find an excited state, which we designate as S1', that relaxes to the S1 minimum, and we find that the S2 state has two stable configurations. Chirp-dependence measurements, aided by numerical simulations, reveal how internal conversion from S2 to S1 depends on solvent viscosity and pulse duration. By combining solvent viscosity, transform-limited pulses, and chirped pulses, we obtain an overall change in the S2/S1 population ratio of a factor of 86 and 55 for IR144 and IR140, respectively. The increase in the S2/S1 ratio is explained by a two-photon transition to a higher excited state. The ability to maximize the population of higher excited states by delaying or bypassing nonradiative relaxation may lead to the increased efficiency of photochemical processes.

5.
J Phys Chem Lett ; 12(39): 9677-9683, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34590846

RESUMO

Surface defects and organic surface-capping ligands affect the photoluminescence properties of semiconductor quantum dots (QDs) by altering the rates of competing nonradiative relaxation processes. In this study, broadband two-dimensional electronic spectroscopy reveals that absorption of light by QDs prepares vibronic excitons, excited states derived from quantum coherent mixing of the core electronic and ligand vibrational states. Rapidly damped coherent wavepacket motions of the ligands are observed during hot-carrier cooling, with vibronic coherence transferred to the photoluminescent state. These findings suggest a many-electron, molecular theory for the electronic structure of QDs, which is supported by calculations of the structures of conical intersections between the exciton potential surfaces of a small ammonia-passivated model CdSe nanoparticle.

6.
J Chem Phys ; 155(3): 035103, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293883

RESUMO

The nonadiabatic mechanism that mediates nonradiative decay of the bright S2 state to the dark S1 state of carotenoids involves population of a bridging intermediate state, Sx, in several examples. The nature of Sx remains to be determined definitively, but it has been recently suggested that Sx corresponds to conformationally distorted molecules evolving along out-of-plane coordinates of the isoprenoid backbone near a low barrier between planar and distorted conformations on the S2 potential surface. In this study, the electronic and vibrational dynamics accompanying the formation of Sx in toluene solutions of the ketocarotenoid canthaxanthin (CAN) are characterized with broadband two-dimensional electronic spectroscopy (2DES) with 7.8 fs excitation pulses and detection of the linear polarization components of the third-order nonlinear optical signal. A stimulated-emission cross peak in the 2DES spectrum accompanies the formation of Sx in <20 fs following excitation of the main absorption band. Sx is prepared instantaneously, however, with excitation of hot-band transitions associated with distorted conformations of CAN's isoprenoid backbone in the low frequency onset of the main absorption band. Vibrational coherence oscillation maps and modulated anisotropy transients show that Sx undergoes displacements from the Franck-Condon S2 state along out-of-plane coordinates as it passes to the S1 state. The results are consistent with the conclusion that CAN's carbonyl-substituted ß-ionone rings impart an intramolecular charge-transfer character that frictionally slows the passage from Sx to S1 compared to carotenoids lacking carbonyl substitution. Despite the longer lifetime, the S1 state of CAN is formed with retention of vibrational coherence after passing through a conical intersection seam with the Sx state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...