Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Placenta ; 117: 161-168, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915433

RESUMO

The emergence of COVID-19 has created a major health crisis across the globe. Invasion of SARS-CoV-2 into the lungs causes acute respiratory distress syndrome (ARDS) that result in the damage of lung alveolar epithelial cells. Currently, there is no standard treatment available to treat the disease and the resultant lung scarring is irreversible even after recovery. This has prompted researchers across the globe to focus on developing new therapeutics and vaccines for the treatment and prevention of COVID-19. Mesenchymal stem cells (MSCs) have emerged as an efficient drug screening platform and MSC-derived organoids has found applications in disease modeling and drug discovery. Perinatal tissue derived MSC based cell therapies have been explored in the treatment of various disease conditions including ARDS because of their enhanced regenerative and immunomodulatory properties. The multi-utility properties of MSCs have been described in this review wherein we discuss the potential use of MSC-derived lung organoids in screening of novel therapeutic compounds for COVID-19 and also in disease modeling to better understand the pathogenesis of the disease. This article also summarizes the rationale behind the development of MSC-based cell- and cell-free therapies and vaccines for COVID-19 with a focus on the current progress in this area. With the pandemic raging, an important necessity is to develop novel treatment strategies which will not only alleviate the disease symptoms but also avoid any off-target effects which could further increase post infection sequelae. Naturally occurring mesenchymal stem cells could be the magic bullet which fulfil these criteria.


Assuntos
Âmnio/citologia , COVID-19/terapia , Células-Tronco Mesenquimais , Placenta/citologia , SARS-CoV-2 , Cordão Umbilical/citologia , Vacinas contra COVID-19 , Terapia Baseada em Transplante de Células e Tecidos , Exossomos/transplante , Feminino , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/ultraestrutura , Gravidez , SARS-CoV-2/imunologia , Geleia de Wharton/citologia
2.
Exp Cell Res ; 409(2): 112912, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762897

RESUMO

Rapid proliferation, high stemness potential, high invasiveness and apoptotic evasion are the distinctive hallmarks of glioma malignancy. The dysregulation of the Wnt/ß-catenin pathway is the key factor regulating glioma malignancy. Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), which has a prominent pro-apoptotic role in glioma stem cells, has two functional domains, the netrin-like domain (NLD), and cysteine-rich domain (CRD) both of which contribute to apoptotic properties of the whole protein. However, there are no reports elucidating the specific effects of individual domains of sFRP4 in inhibiting the invasive properties of glioma. This study explores the efficacy of the domains of sFRP4 in inhibiting the key hallmarks of glioblastoma such as invasion, metastasis, and stemness. We overexpressed sFRP4 and its domains in the glioblastoma cell line, U87MG cells and observed that both CRD and NLD domains played prominent roles in attenuating cancer stem cell properties. Significantly, we could demonstrate for the first time that both NLD and CRD domains negatively impacted the key driver of metastasis and migration, the matrix metalloproteinase-2 (MMP-2). Mechanistically, compared to CRD, NLD domain suppressed MMP-2 mediated invasion more effectively in glioma cells as observed in matrigel invasion assay and a function-blocking antibody assay. Fluorescent matrix degradation assay further revealed that NLD reduces matrix degradation. NLD also significantly disrupted fibronectin assembly and decreased cell adhesion in another glioma cell line LN229. In conclusion, the NLD peptide of sFRP4 could be a potent short peptide therapeutic candidate for targeting MMP-2-mediated invasion in the highly malignant glioblastoma multiforme.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Metaloproteinase 2 da Matriz/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células Tumorais Cultivadas , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA