Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(17): 7838-7847, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38635967

RESUMO

The exfoliation of nonlayered materials to mono- or few-layers is of growing interest to realize their full potential for various applications. Nickel cobaltite (NiCo2O4), which has a spinel crystal structure, is one such nonlayered material with unique properties and has been utilized in a wide range of applications. Herein, NiCo2O4 is synthesized from NiCo2- Layered double hydroxides using a topochemical conversion technique. Subsequently, bulk NiCo2O4 is exfoliated into mono- or few-layer nickel cobaltene nanosheets using liquid-phase exfoliation in various low-boiling point solvents. An analytical centrifuge technique is also utilized to understand the solute-solvent interactions by determining their dispersion stability using parameters such as the instability index and sedimentation velocity. Among the studied solvents, water/isopropyl alcohol cosolvent is found to have better dispersion stability. In addition, density functional theory calculations are carried out to understand the exfoliation mechanism. It is found that the surface termination arising from the Co-O bond needs the least energy for exfoliation. Furthermore, the obtained nickel cobaltene nanosheets are utilized as an active material for supercapacitors without any conductive additives or binders. A solid-state symmetric supercapacitor delivers a specific capacitance of 10.2 mF cm-2 with robust stability, retaining ∼98% capacitance after 4000 cycles.

2.
J Phys Condens Matter ; 35(25)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958043

RESUMO

The new paradigm in electronics consists in realizing the seamless integration of many properties latent in nanomaterials, such as mechanical flexibility, strong spin-orbit coupling (Rashba spin splitting-RSS), and piezoelectricity. Taking cues from the pointers given on 1D ZnO nanowires (ACS Nano2018121811-20), the concept can be extended to multifunctional two-dimensional (2D) materials, which can serve as an ideal platform in next-generation electronics such as self-powered flexible piezo-spintronic device. However, a microscopically clear understanding reachable from the state-of-the-art density functional theory-based approaches is a prerequisite to advancing this research domain. Atomic-scale insights gained from meticulously performed scientific computations can firmly anchor the growth of this important research field, and that is of undeniable relevance from scientific and technological outlooks. This article reviews the scientific advance in understanding 2D materials hosting all the essential properties, i.e. flexibility, piezoelectricity, and RSS. Important 2D semiconducting monolayers that deserve a special mention, include monolayers of buckled MgX (X = S, Se, Te), CdTe, ZnTe, Janus structures of transition metal trichalcogenides, Janus tellurene and 2D perovskites. van Der Waals multilayers are also built to design multifunctional materials via modulation of the stacking sequence and interlayer coupling between the constituent layers. External electric field, strain engineering and charge doping are perturbations mainly used to tune the spintronic properties. Finally, the contact properties of these monolayers are also crucial for their actual implementation in electronic devices. The nature of the contacts, Schottky/Ohmic, needs to be carefully examined first as it controls the device's performance. In this regard, the rare occurrence of Ohmic contact in graphene/MgS van der Waals hetero bilayer has been presented in this review article.

3.
ACS Appl Mater Interfaces ; 13(34): 40872-40879, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470109

RESUMO

The next-generation spintronic device demands the gated control of spin transport across the semiconducting channel through the replacement of the external gate voltage source by the piezo potential, as experimentally demonstrated in Zhu et al. ACS Nano, 2018, 12 (2), 1811-1820. Consequently, a high level of out-of-plane piezoelectricity together with a large Rashba spin splitting is sought after in semiconducting channel materials. Inspired by this experiment, a new hexagonal buckled two-dimensional (2D) semiconductor, ZnTe, and its iso-electronic partner, CdTe, are proposed herewith. These 2D materials show a strong spin-orbit coupling (SOC), which is evidenced by a large Rashba constant of 1.06 and 1.27 eV·Å, respectively, in ZnTe and CdTe monolayers. Moreover, these Rashba semiconductors exhibit a giant out-of-plane piezoelectric coefficient (d33) = 88.68 and 172.61 pm/V, and can thereby generate a high piezo potential for gating purposes in spin field-effect transistors (spin-FETs). While the low elastic stiffness implies the mechanical flexibility or stretchability in these monolayers. The Rashba constants are found to be effectively modulated via external perturbations, such as strain and electric field. The wide band gap provides ample room for modulation in its electronic properties via external perturbations. Such scope is severely limited in previously reported narrow band gap Rashba semiconductors. The fascinating results found in this work indicate their great potential for applications in next-generation self-powered flexible-piezo-spintronic devices. Moreover, a new class of hexagonal buckled ZnX (X: S, Se, or Te) monolayers is proposed herein based on their previously synthesized bulk counterparts, while their electronic, mechanical, piezoelectric, and thermal properties have been thoroughly investigated using the state-of-art density functional theory (DFT).

4.
Nanoscale ; 13(17): 8210-8223, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33885124

RESUMO

The coupling of piezoelectric properties with Rashba spin-orbit coupling (SOC) has proven to be the limit breaker that paves the way for a self-powered spintronic device (ACS Nano, 2018, 12, 1811-1820). For further advancement in next-generation devices, a new class of buckled, hexagonal magnesium-based chalcogenide monolayers (MgX; X = S, Se, Te) have been predicted which are direct band gap semiconductors satisfying all the stability criteria. The MgTe monolayer shows a strong SOC with a Rashba constant of 0.63 eV Å that is tunable to the extent of ±0.2 eV Å via biaxial strain. Also, owing to its broken inversion symmetry and buckling geometry, MgTe has a very large in-plane as well as out-of-plane piezoelectric coefficient. These results indicate its prospects for serving as a channel semiconducting material in self-powered piezo-spintronic devices. Furthermore, a prototype for a digital logic device can be envisioned using the ac pulsed technology via a perpendicular electric field. Heat transport is significantly suppressed in these monolayers as observed from their intrinsic low lattice thermal conductivity at room temperature: MgS (9.32 W m-1 K-1), MgSe (4.93 W m-1 K-1) and MgTe (2.02 W m-1 K-1). Further studies indicate that these monolayers can be used as photocatalytic materials for the simultaneous production of hydrogen and oxygen on account of having suitable band edge alignment and high charge carrier mobility. This work provides significant theoretical insights into both the fundamental and applied properties of these new buckled MgX monolayers, which are highly suitable for futuristic applications at the nanoscale in low-power, self-powered multifunctional electronic and spintronic devices and solar energy harvesting.

5.
Nanoscale ; 12(44): 22645-22657, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33155008

RESUMO

In this work, we explored the interfacial two-dimensional (2D) physics and significant advancements in the application prospects of MoSSe monolayer when it is combined with a boron pnictide (BP, BAs) monolayer in a van der Waals heterostructure (vdWH) setup. The constructed vdWHs were found to be mechanically and dynamically stable, and they form type-II p-n heterojunctions. Thus, the photogenerated electron-hole pairs are spatially separated. In the BX/MoSSe vdWHs, the BX monolayer serves as excellent donor material for MoSSe, having an ideal donor band gap of ∼1.3 eV. The small value of the conduction band offset (CBO) between the individual monolayers in the vdWHs makes it an excellent candidate for solar energy harvesting in excitonic solar cells, where the power conversion efficiencies were calculated to be 22.97% (BP/MoSSe) and 20.86% (BAs/MoSSe). Also, more than four-fold enhancement in the out-of-plane piezoelectric coefficient (d33) was observed in the MoSSe-based vdWH relative to that in the MoS2-based vdWH owing to the intrinsic built-in vertical electric field in MoSSe. This is consistent with the out-of-plane piezoelectricity brought about by the alteration in symmetry at the metal-semiconductor Schottky junction, which has been observed experimentally [M.-M. Yang, Z.-D. Luo, Z. Mi, J. Zhao, S. P. E and M. Alexe, Nature, 2020, 584, 377-381]. The results obtained in this work provide useful insights into the design of nanomaterials for future applications in nano-optoelectronics, more efficient excitonic solar cells, and nanoelectromechanical systems (NEMS). Furthermore, this work demonstrates outstanding potential for the application of these vdWHs in superfast electronics, including low-power digital data storage and memory devices, where the tunnel current between the source and drain is effectively tunable using a normal electric field of small magnitude serving as the gate voltage.

6.
Phys Chem Chem Phys ; 22(37): 21275-21287, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32935717

RESUMO

The response of the electronic properties of the HfN2 monolayer to external perturbation, such as strain and electric fields, has been extensively investigated using density functional theory calculations for its device-based applications and photocatalysis. The HfN2 monolayer is found to be a semiconductor showing a direct band gap of 1.44 eV, which is widely tunable by 0.9 eV via application of biaxial strain. Furthermore, the tunability in the band edges of the HfN2 monolayer straddling the water redox potential under a biaxial strain of ±10% makes it suitable for solar energy harvesting via photocatalytic applications over a wide range (0-7) of pH. The band gap can be decreased by 29.8% under a biaxial tensile strain of 10%. Upon incorporation of spin orbit coupling (SOC) a large spin splitting at the conduction band (Δc ∼ 314 meV) and a small splitting at the valence band (Δv ∼ 32 meV) are noted, which is attributable to the orbital composition of the band edges. The spin splitting in the band edges is found to be adjustable via biaxial compressive strain. The strain dependent mechanical properties and stability reveal the ability of the HfN2 monolayer to withstand a large magnitude of strain of up to ±10%, thereby bringing about a giant tunability in its Young modulus (Y) from 66 N m-1 to 283 N m-1, which is gainfully exploitable in flexible electronics. The tunability in Y over such a wide range has not been observed in other 2D materials. Moreover, the HfN2 monolayer undergoes a transition from a semiconducting to a metallic state under the application of a normal electric field or gate voltage of 0.48 V Å-1, which may potentially serve as the OFF (semiconducting) and ON (metallic) state in devices. Interestingly, an electric field of such intensity has been realized experimentally using pulsed ac field technology. Such a small gate voltage will greatly lower its power consumption. The electronic origin of this transition from the OFF to the ON state is found to arise from unoccupied NFEG (Nearly Free Electron Gas) states. A HfN2 monolayer based tunnel field effect transistor (t-FET) is proposed herewith as a model device for low-power digital data storage, thereby paving new avenues in flexible electronics and memory devices.

7.
Nanotechnology ; 31(49): 495208, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32975227

RESUMO

Semiconducting indium selenide (InSe) monolayers have drawn a great deal of attention among all the chalcogenide two-dimensional materials on account of their high electron mobility; however, they suffer from low hole mobility. This inherent limitation of an InSe monolayer can be overcome by stacking it on top of a boron phosphide (BP) monolayer, where the complementary properties of BP can bring additional benefits. The electronic, optical, and external perturbation-dependent electronic properties of InSe/BP hetero-bilayers have been systematically investigated within density functional theory in anticipation of its cutting-edge applications. The InSe/BP heterostructure has been found to be an indirect semiconductor with an intrinsic type-II band alignment where the conduction band minimum (CBM) and valence band maximum (VBM) are contributed by the InSe and BP monolayers, respectively. Thus, the charge carrier mobility in the heterostructure, which is mainly derived from the BP monolayer, reaches as high as 12 × 103 cm2 V-1 s-1, which is very much desired in superfast nanoelectronics. The suitable bandgap accompanied by a very low conduction band offset between the donor and acceptor along with robust charge carrier mobility, and the mechanical and dynamical stability of the heterostructure attests its high potential for applications in solar energy harvesting and nanoelectronics. The solar to electrical power conversion efficiency (20.6%) predicted in this work surpasses the efficiencies reported for InSe based heterostructures, thereby demonstrating its superiority in solar energy harvesting. Moreover, the heterostructure transits from the semiconducting state (the OFF state) to the metallic state (the ON state) by the application of a small electric field (∼0.15 V Å-1) which is brought about by the actual movement of the bands rather than via the nearly empty free electron gas (NFEG) feature. This thereby testifies to its potential for applications in digital data storage. Moreover, the heterostructure shows strong absorbance over a wide spectrum ranging from UV to the visible light of solar radiation, which will be of great utility in UV-visible light photodetectors.

8.
J Phys Condens Matter ; 32(31): 315301, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32378516

RESUMO

Phonons in crystalline solids are of utmost importance in governing its lattice thermal conductivity (k L). In this work, k L in hafnium (Hf) dichalcogenide monolayers has been investigated based on ab initio DFT coupled to linearized Boltzmann transport equation together with single-mode relaxation-time approximation. Ultra-low k L found in HfS2 (2.19 W m-1 K-1), HfSe2 (1.23 W m-1 K-1) and HfSSe (1.78 W m-1 K-1) monolayers at 300 K, is comparable to that of the state-of-art bulk thermoelectric materials, such as, Bi2Te3 (1.6 W m-1 K-1), PbTe (2.2 W m-1 K-1) and SnSe (2.6 W m-1 K-1). Gigantic longitudinal-transverse optical (LO-TO) splitting of up to 147.7 cm-1 is noticed at the Brillouin zone-centre (Γ-point), which is much higher than that in MoS2 single layer (∼2 cm-1). It is driven by the colossal phonon-electric field coupling arising from the domination of ionic character in the interatomic bonds and Born effective or dynamical charges as high as 7.4e on the Hf ions, which is seven times that on Mo in MoS2 single layer. Enhancement in k L occurs in HfS2 (2.19 to 4.1 W m-1 K-1), HfSe2 (1.23 to 1.7 W m-1 K-1) and HfSSe (1.78 to 2.2 W m-1 K-1) upon the incorporation of the non-analytic correction term. Furthermore, the mode Grüneisen parameter is calculated to be as high as ∼2.0, at room temperature, indicating a strong anharmonicity. Moreover, the contribution of optical phonons to k L is found to be ∼12%, which is significantly high than that in single-layer MoS2. Large atomic mass of Hf (178.5 u), small phonon group velocities (4-5 km s-1), low Debye temperature (∼166 K), low bond and elastic stiffness (Young's modulus ∼75 N m-1), small phonon lifetimes (∼6 ps), low specific heat capacity (∼17 J K-1 mol-1) and strong anharmonicity are collectively found to be the factors responsible for such a low k L. These findings would be immensely helpful in designing thermoelectric interconnects at the nanoscale and 2D material-based energy harvesters.

9.
J Phys Condens Matter ; 32(35): 355301, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32340009

RESUMO

Although CdX (X = S, Se) has been mostly studied in the field of photocatalysis, photovoltaics, their intrinsic properties, such as, mechanical, piezoelectric, electron and phonon transport properties have been completely overlooked in buckled CdX monolayers. Ultra-low lattice thermal conductivity [1.08 W m-1 K-1 (0.75 W m-1 K-1)] and high p-type Seebeck coefficient [1300 µV K-1 (850 µV K-1)] in CdS (CdSe) monolayers have been found in this work based on first-principles DFT coupled to semi-classical Boltzmann transport equations, combining both the electronic and phononic transport. The dimensionless thermoelectric figure of merit is calculated to be 0.78 (0.5) in CdS (CdSe) monolayers at room temperature, which is comparable to that of two-dimensional (2D) tellurene (0.8), arsenene and antimonene (0.8), indicating its great potential for applications in 2D thermoelectrics. Such a low lattice thermal conductivity arise from the participation of both acoustic [91.98% (89.22%)] and optical modes [8.02% (10.78%)] together with low Debye temperature [254 K (187 K)], low group velocity [4 km s-1 (3 km s-1)] in CdS (CdSe) monolayers, high anharmonicity and short phonon lifetime. Substantial cohesive energy (∼4-5 eV), dynamical and mechanical stability of the monolayers substantiate the feasibility in synthesizing the single layers in experiments. The inversion symmetry broken along the z direction causes out-of-plane piezoelectricity. |d 33| ∼ 21.6 pm V-1, calculated in CdS monolayer is found to be the highest amongst structures having atomic-layer thickness. Superlow Young's modulus ∼41 N m-1 (31 N m-1) in CdS (CdSe) monolayers, which is comparable to that of planar CdS (29 N m-1) and TcTe2 (34 N m-1), is an indicator of its superhigh flexibility. Direct semiconducting band gap, high carrier mobility (∼500 cm2 V-1 s-1) and superhigh flexibility in CdX monolayers signify its gigantic potential for applications in ultrathin, stretchable and flexible nanoelectronics. The all-round properties can be synergistically combined together in futuristic applications in nano-piezotronics as well.

10.
ACS Appl Mater Interfaces ; 12(15): 18123-18137, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223217

RESUMO

Interfaces of heterostructures are routinely studied for different applications. Interestingly, monolayers of the same material when interfaced in an unconventional manner can bring about novel properties. For instance, CdS monolayers, stacked in a particular order, are found to show unprecedented potential in the conversion of nanomechanical energy, solar energy, and waste heat into electricity, which has been systematically investigated in this work, using DFT-based approaches. Moreover, stable ultrathin structures showing strong capabilities for all kinds of energy conversion are scarce. The emergence of a very high out-of-plane piezoelectricity, |d33| ≈ 56 pm/V, induced by the inversion symmetry broken in the buckled structure helps to supersede the previously reported bulk wurzite GaN, AlN, and Janus multilayer structures of Mo- and W-based dichalcogenides. The piezoelectric coefficients have been found to be largely dependent on the relative stacking between the two layers. CdS bilayer is a direct band gap semiconductor, with its band edges straddling the water redox potential, thereby making it thermodynamically favorable for photocatalytic applications. Strain engineering facilitates its transition from type I to type II semiconductor in CdS bilayer stacked over monolayer boron phosphide, and the theoretically calculated power conversion efficiency (PCE) in the 2D excitonic solar cell exceeds 27% for a fill factor of 0.8, which is much higher than that in ZnO/CdS/CuInGaSe solar cell (20% efficiency). Thermoelectric properties have been investigated using semi classical Boltzmann transport equations for electrons and phonons within the constant relaxation time approximation coupled to deformation potential theory, which reveal ultralow thermal conductivity (κl ≈ 0.78 W m-1 K-1) at room temperature because of the presence of heavy element Cd, strong anharmonicity (high mode Gruneisen parameter at long wavelength, phonon lifetime <5 ps), low phonon group velocity (4 km/s), and low Debye temperature (260 K). Such a low thermal conductivity is lower than that of dumbbell silicene (2.86 W m-1 K-1), SnS2 (6.41 W m-1 K-1) and SnSe2 (3.82 W m-1 K-1), and SnP3 (4.97 W m-1 K-1). CdS bilayer shows a thermoelectric figure of merit (ZT) ≈ 0.8 for p-type and ∼0.7 for n-type doping at room temperature. Its ultrahigh carrier mobility (µe ≈ 2270 cm2 V-1 s-1) is higher than that of single-layer MoS2 and comparable to that in InSe. The versatile properties of CdS bilayer together with its all-round stability supported by ab initio molecular dynamics simulation, phonon dispersion, and satisfaction of Born-Huang stability criteria highlight its outstanding potential for applications in device fabrication and applications in next-generation nanoelectronics and energy harvesting.

11.
ACS Appl Mater Interfaces ; 12(2): 3114-3126, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31904214

RESUMO

A stable ultrathin 2D van der Waals (vdW) heterobilayer, based on the recently synthesized boron monophosphide (BP) and the widely studied molybdenum disulfide (MoS2), has been systematically explored for the conversion of waste heat, solar energy, and nanomechanical energy into electricity. It shows a gigantic figure of merit (ZT) > 12 (4) for p (n)-type doping at 800 K, which is the highest ever reported till date. At room temperature (300 K), ZT reaches 1.1 (0.3) for p (n)-type doping, which is comparable to experimentally measured ZT = 1.1 on the PbTe-PbSnS2 nanocomposite at 300 K, while it outweighs the Cu2Se-CuInSe2 nanocomposite (ZT = 2.6 at 850 K) and the theoretically calculated ZT = 7 at 600 K on silver halides. Lattice thermal conductivity (κl ≈ 49 W m-1 K-1) calculated at room temperature is lesser than those of black phosphorene (78 W m-1 K-1) and arsenene (61 W m-1 K-1). The nearly matched lattice constants in the commensurate lattices of the constituent monolayers help to preserve the direct band gap at the K point in the type II vdW heterobilayer of MoS2/BP, where BP and MoS2 serve as donor and acceptor materials, respectively. An ultrahigh carrier mobility of ∼20 × 103 cm2 V-1 s-1 is found, which exceeds those of previously reported transition metal dichalcogenide-based vdW heterostructures. The exciton binding energy (0.5 eV) is close to those of MoS2 (0.54 eV) and C3N4 (0.33 eV) single layers. The calculated power conversion efficiency (PCE) in the monolayer MoS2/BP heterobilayer exceeds 20%. It surpasses the efficiency in MoS2/p-Si heterojunction solar cells (5.23%) and competes with the theoretically calculated ones, as listed in the manuscript. Furthermore, a high optical absorbance (∼105 cm-1) of visible light and a small conduction band offset (0.13 eV) make MoS2/BP very promising in 2D excitonic solar cells. The out-of-plane piezoelectric strain coefficient, d33 ≈ 3.16 pm/V, is found to be enhanced 4-fold (∼14.3 pm/V) upon applying 7% vertical compressive strain on the heterobilayer, which corresponds to ∼1 kbar of hydrostatic pressure. Such a high out-of-plane piezoelectric coefficient, which can tune top-gating effects in ultrathin 2D nanopiezotronics, is a relatively new finding. As BP has been synthesized recently, experimental realization of the multifunctional, versatile MoS2/BP heterostructure would be highly feasible.

12.
Nanoscale ; 11(45): 21880-21890, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31697290

RESUMO

A stable 2D van der Waals (vdW) heterobilayer, constituted by boron monophosphide (BP) and Gallium Nitride (GaN) monolayers, has been explored for different kinds of energy conversion and nanoelectronics. The nearly matched lattice constants of GaN and BP are commensurate with each other in their lattice structures. The out-of-plane inversion asymmetry coupled with the large difference in atomic charges between the GaN and BP monolayers induces in the heterobilayer a giant out-of-plane piezoelectric coefficient (|d33|max ≈ 40 pm V-1), which is the highest ever reported in 2D materials of a finite thickness. It is much higher than the out-of-plane piezoelectric coefficient reported earlier in multilayered Janus transition metal dichalcogenide MXY (M = Mo, W; X, Y = S, Se, Te) (|d33|max = 10.57 pm V-1). Such a high out-of-plane piezoelectricity found in a BP/GaN heterobilayer can bring about gigantic strain-tunable top gating effects in nanopiezotronic devices based on the same. Moreover, electron mobility (∼104 cm2 V-1 s-1) is much higher than that of transition metal dichalcogenides and conventional semiconductors. The origin of low lattice thermal conductivity (κL ∼ 25.25 W m-1 K-1) in BP/GaN at room temperature, which is lower than that of black phosphorene (78 W m-1 K-1), buckled arsenene (61 W m-1 K-1), BCN (90 W m-1 K-1), MoS2 (34.5 W m-1 K-1) and WS2 (32 W m-1 K-1) monolayers, has been systematically investigated via phonon dispersion, lattice thermal conductivity, phonon lifetime and mode Grüneisen parameters. The valence band maximum (VBM) and conduction band minimum (CBM) arising from GaN and BP monolayers respectively result in a type II vdW heterobilayer, which is found to be thermodynamically favorable for photocatalytic water splitting in both acidic and neutral media. The exciton binding energies are comparable to those of MoS2 and C3N4 single layers, while the absorbance reaches as high as ∼105 cm-1 in the visible wavelength region. The emergence of high piezoelectricity, high carrier mobility, low lattice thermal conductivity and photocatalytic water splitting abilities in the proposed vdW heterobilayer signifies enormous potential for its versatile applications in nanoscale energy harvesting, e.g., nano-sensors in medical devices, future nanopiezotronics, 2D thermoelectrics and solar energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...