Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Bronconeumol ; 2024 May 06.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38755052

RESUMO

Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38638042

RESUMO

This detailed review disclosed the NF-κB pro-inflammatory gen's activity regulation and explored the therapeutic significance, activation, and inhibition. This study uncovers the structural intricacies of the NF-κB proteins and highlights the key role of SIRT1 in NF-kB signaling pathway regulation. Particularly the Rel Homology Domain (RHD), elucidating interactions and the regulatory mechanisms involving inhibitory proteins like IκB and p100 within the NF-κB signaling cascade. Disruption of the pathway is important in uncontrolled inflammation and immune disorders. This study extensively describes the role connections of canonical and non-canonical signaling pathways of NF-κB with inflammatory and cellular responses. SIRT1 belongs to the class III histone deacetylase, via RelA/p65 deacetylation, it regulates the activity of NF-κB, closely linked with the NAD+/NADH cellular ratio, influencing stress responses, aging processes, gene regulation, and metabolic pathways. This detailed study reveals SIRT1 as a crucial avenue for uncovering the role of imbalanced NF-κB in diabetes, obesity, and atherosclerosis. This study provides valuable knowledge about the therapeutic targets of inflammatory disorders.

3.
ACS Biomater Sci Eng ; 10(5): 2703-2724, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38644798

RESUMO

The scientific world is increasingly focusing on rare earth metal oxide nanomaterials due to their consequential biological prospects, navigated by breakthroughs in biomedical applications. Terbium belongs to rare earth elements (lanthanide series) and possesses remarkably strong luminescence at lower energy emission and signal transduction properties, ushering in wide applications for diagnostic measurements (i.e., bioimaging, biosensors, fluorescence imaging, etc.) in the biomedical sectors. In addition, the theranostic applications of terbium-based nanoparticles further permit the targeted delivery of drugs to the specific site of the disease. Furthermore, the antimicrobial properties of terbium nanoparticles induced via reactive oxygen species (ROS) cause oxidative damage to the cell membrane and nuclei of living organisms, ion release, and surface charge interaction, thus further creating or exhibiting excellent antioxidant characteristics. Moreover, the recent applications of terbium nanoparticles in tissue engineering, wound healing, anticancer activity, etc., due to angiogenesis, cell proliferation, promotion of growth factors, biocompatibility, cytotoxicity mitigation, and anti-inflammatory potentials, make this nanoparticle anticipate a future epoch of nanomaterials. Terbium nanoparticles stand as a game changer in the realm of biomedical research, proffering a wide array of possibilities, from revolutionary imaging techniques to advanced drug delivery systems. Their unique properties, including luminescence, magnetic characteristics, and biocompatibility, have redefined the boundaries of what can be achieved in biomedicine. This review primarily delves into various mechanisms involved in biomedical applications via terbium-based nanoparticles due to their physicochemical characteristics. This review article further explains the potential biomedical applications of terbium nanoparticles with in-depth significant mechanisms from the individual literature. This review additionally stands as the first instance to furnish a "single-platted" comprehensive acquaintance of terbium nanoparticles in shaping the future of healthcare as well as potential limitations and overcoming strategies that require exploration before being trialed in clinical settings.


Assuntos
Térbio , Humanos , Térbio/química , Animais , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Engenharia Tecidual/métodos , Nanomedicina Teranóstica/métodos , Sistemas de Liberação de Medicamentos/métodos
4.
ACS Omega ; 9(16): 18438-18448, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680294

RESUMO

Sortilin (SORT1) is a multifunctional protein intricately involved in atherogenesis, coronary artery disease (CAD), and various neurological disorders. It has materialized as a potential pharmacological target for therapeutic development due to its diverse biological roles in pathological processes. Despite its central role under these conditions, effective therapeutic strategies targeting SORT1 remain challenging. In this study, we introduce a drug repurposing strategy guided by structural insights to identify potent SORT1 inhibitors with broad therapeutic potential. Our approach combines molecular docking, virtual screening, and molecular dynamics (MD) simulations, enabling the systematic evaluation of 3648 FDA-approved drugs for their potential to modulate SORT1. The investigation reveals a subset of repurposed drugs exhibiting highly favorable binding profiles and stable interactions within the binding site of SORT1. Notably, two hits, ergotamine and digitoxin, were carefully chosen based on their drug profiles and subjected to analyze their interactions with SORT1 and stability assessment via all-atom MD simulations spanning 300 ns (ns). The structural analyses uncover the complex binding interactions between these identified compounds and SORT1, offering essential mechanistic insights. Additionally, we explore the clinical implications of repurposing these compounds as potential therapeutic agents, emphasizing their significance in addressing atherogenesis, CAD, and neurological disorders. Overall, this study highlights the efficacy of structure-guided drug repurposing and provides a solid foundation for future research endeavors aimed at the development of effective therapies targeting SORT1 under diverse pathological conditions.

5.
Biomed Pharmacother ; 174: 116533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574626

RESUMO

INTRODUCTION: Diabetic nephropathy is a type of kidney disorder that develops as a complication of multifactorial diabetes. Diabetic nephropathy is characterized by microangiopathy, resulting from glucose metabolism, oxidative stress, and changes in renal hemodynamics. This study strived to evaluate the in vitro cytoprotective activity of atorvastatin (ATR), and quercetin (QCT) alone and in combination against diabetic nephropathy. METHODS: The MTT assay was utilized to analyze the effects of the test compounds on NRK-52E rat kidney epithelial cells. The detection of apoptosis and ability to scavenge free radicals was assessed via acridine orange-ethidium bromide (AO-EB) dual fluorescence staining, and 2,2-diphenyl-1-picrylhydrazyfree assay (DPPH), respectively. The ability of anti-inflammatory effect of the test compounds and western blot analysis against TGF-ß, TNF-α, and IL-6 further assessed to determine the combinatorial efficacy. RESULTS: Atorvastatin and quercetin treatment significantly lowered the expression of TGF-ß, TNF-α, and IL-6 indicating the protective role in Streptozotocin-induced nephrotoxicity. The kidney cells treated with a combination of atorvastatin and quercetin showed green fluorescing nuclei in the AO-EB staining assay, indicating that the combination treatment restored cell viability. Quercetin, both alone and in combination with atorvastatin, demonstrated strong DPPH free radical scavenging activity and further encountered an anti-oxidant and anti-inflammatory effect on the combination of these drugs. CONCLUSION: Nevertheless, there is currently no existing literature that reports on the role of QCT as a combination renoprotective drug with statins in the context of diabetic nephropathy. Hence, these findings suggest that atorvastatin and quercetin may have clinical potential in treating diabetic nephropathy.


Assuntos
Atorvastatina , Nefropatias Diabéticas , Quercetina , Quercetina/farmacologia , Atorvastatina/farmacologia , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Ratos , Linhagem Celular , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Quimioterapia Combinada , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
6.
EXCLI J ; 23: 300-334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655092

RESUMO

Cutaneous Squamous Cell Carcinoma (cSCC) is a common and potentially fatal type of skin cancer that poses a significant threat to public health and has a high prevalence rate. Exposure to ultraviolet radiation on the skin surface increases the risk of cSCC, especially in those with genetic syndromes like xerodermapigmentosum and epidermolysis bullosa. Therefore, understanding the molecular pathogenesis of cSCC is critical for developing personalized treatment approaches that are effective in cSCC. This article provides a comprehensive overview of current knowledge of cSCC pathogenesis, emphasizing dysregulated signaling pathways and the significance of molecular profiling. Several limitations and challenges associated with conventional therapies, however, are identified, stressing the need for novel therapeutic strategies. The article further discusses molecular targets and therapeutic approaches, i.e., epidermal growth factor receptor inhibitors, hedgehog pathway inhibitors, and PI3K/AKT/mTOR pathway inhibitors, as well as emerging molecular targets and therapeutic agents. The manuscript explores resistance mechanisms to molecularly targeted therapies and proposes methods to overcome them, including combination strategies, rational design, and optimization. The clinical implications and patient outcomes of molecular-targeted treatments are assessed, including response rates and survival outcomes. The management of adverse events and toxicities in molecular-targeted therapies is crucial and requires careful monitoring and control. The paper further discusses future directions for therapeutic advancement and research in this area, as well as the difficulties and constraints associated with conventional therapies.

7.
Curr Pharm Des ; 30(7): 519-535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38321896

RESUMO

Coleus amboinicus Benth., also known as Plectranthus amboinicus (Lour.) Spreng., is a perennial plant from the Lamiaceae family commonly found in tropical and warm regions of Africa, Asia, and Australia. Folk medicine commonly employs this remedy to address various ailments, including but not limited to asthma, headaches, skin disorders, coughs, constipation, colds, and fevers. Several phytoconstituents from various phytochemical classes, such as phenolics, terpenoids, phenolic acids, flavonoids, flavones, and tannins, have been identified in Coleus amboinicus up to the present time. Numerous pharmacological properties of Coleus amboinicus crude extracts have been documented through both in vitro and in vivo studies, including but not limited to antitumor, antibacterial, antifungal, antiprotozoal, anti-inflammatory, antioxidant, antidiabetic, wound healing, analgesic, antirheumatic, and various other therapeutic effects. Due to its extensive history of traditional usage, the diverse array of bioactive phytochemicals, and numerous established pharmacological activities, Coleus amboinicus is widely regarded as having significant potential for clinical applications and warrants further exploration, development, and exploitation through research. With this context, the present study gathers information on the occurrence, biological description, cultivation, and nutritional values of Coleus amboinicus. Furthermore, it thoroughly discusses various phytoconstituents, along with their classes, present in Coleus amboinicus, followed by detailed descriptions of their pharmacological activities based on recent literature.


Assuntos
Compostos Fitoquímicos , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Animais , Plectranthus/química , Medicina Tradicional , Fitoterapia
8.
Heliyon ; 10(4): e25754, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370192

RESUMO

The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.

9.
Curr Drug Deliv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409707

RESUMO

The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of Essential Oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.

10.
Photodiagnosis Photodyn Ther ; 45: 103959, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228257

RESUMO

Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article.


Assuntos
Neoplasias da Mama , Nanoestruturas , Fotoquimioterapia , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fotoquimioterapia/métodos , Fototerapia/métodos , Terapia Fototérmica , Fármacos Fotossensibilizantes/uso terapêutico , Nanoestruturas/uso terapêutico
11.
Heliyon ; 10(1): e23810, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226207

RESUMO

Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.

12.
Int J Biol Macromol ; 260(Pt 2): 129581, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266848

RESUMO

One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.


Assuntos
Quitosana , Ácidos Nucleicos , Quitosana/química , Prótons , Técnicas de Transferência de Genes , Terapia Genética/métodos
13.
ACS Biomater Sci Eng ; 10(1): 271-297, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38096426

RESUMO

Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Nanovacinas , Nanopartículas/uso terapêutico , COVID-19/prevenção & controle , Vacinas/uso terapêutico , Lipídeos
14.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38116764

RESUMO

Within the realm of soluble factors that have emerged as potential targets for therapeutic intervention, the chemokine interleukin-8 (IL-8) has garnered attention as a potential contributor to treatment responses in various cancer types. The utilization of naturally occurring anticancer compounds for treating cancer patients has shown substantial advancements in survival rates across early and advanced stages of the disease. In silico research findings provide support for the application of phytochemicals as potential inhibitors of IL-8, and phytochemicals exhibiting a high binding free energy and crucial interactions display promising anticancer properties, positioning them as candidates for future drug development. Noteworthy phytochemicals such as IMPHY006634 (Isohydnocarpin), IMPHY007957 (Chitranone) and IMPHY013015 (1-Hydroxyrutaecarpine) were predicted to possess inhibitory activity against IL-8, with calculated energies ranging from -9.9 to -9.1 kcal/mol, respectively. Several hydrogen bonds, including common amino acid residues Lys9 and CYS48, were identified. Molecular dynamics calculations conducted on these potent inhibitors demonstrated their stability throughout a 200 ns simulation, as indicated by metrics such as RMSD, RMSF, Rg, SASA, H-bonds, PCA and FEL analysis. Moreover, PASS analysis and adherence of these natural compounds to drug-likeness rules like Lipinski's further strengthen their candidacy. Considering these calculations and various parameters, these three prominent natural compounds emerge as promising candidates for anti-IL-8 therapy in the management of cancer.Communicated by Ramaswamy H. Sarma.

15.
Immun Inflamm Dis ; 11(12): e1121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156400

RESUMO

BACKGROUND: Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self-antigens, which can cause systemic or site-specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non-coding RNAs that have been identified as essential contributors to the post-transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. AIMS: This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA-based theranostic interventions. RESULTS & DISCUSSION: Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. CONCLUSION: Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , MicroRNAs , Humanos , MicroRNAs/genética , Medicina de Precisão , Doenças Autoimunes/genética , Doenças Autoimunes/terapia , Artrite Reumatoide/genética , Epigênese Genética
16.
AAPS PharmSciTech ; 24(8): 233, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973643

RESUMO

Blood cancer, also known as hematological malignancy, is one of the devastating types of cancer that has significantly paved its mortality mark globally. It persists as an extremely deadly cancer type and needs utmost attention owing to its negligible overall survival rate. Major challenges in the treatment of blood cancer include difficulties in early diagnosis, as well as severe side effects resulting from chemotherapy. In addition, immunotherapies and targeted therapies can be prohibitively expensive. Over the past two decades, scientists have devised a few nanoparticle-based drug delivery systems aimed at overcoming this challenge. These therapeutic strategies are engineered to augment the cellular uptake, pharmacokinetics, and effectiveness of anticancer drugs. However, there are still numerous types of nanoparticles that could potentially improve the efficacy of blood cancer treatment, while also reducing treatment costs and mitigating drug-related side effects. To the best of our knowledge, there has been limited reviews published on the use of nano-based drug delivery systems for the treatment of hematological malignancies. Therefore, we have made a concerted effort to provide a comprehensive review that draws upon recent literature and patents, with a focus on the most promising results regarding the use of nanoparticle-based approaches for the treatment of hematological malignancies. All these crucial points covered under a common title would significantly help researchers and scientists working in the area.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hematológicas/tratamento farmacológico
17.
Front Immunol ; 14: 1264502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818370

RESUMO

The outbreak of a fatal black fungus infection after the resurgence of the cadaverous COVID-19 has exhorted scientists worldwide to develop a nutshell by repurposing or designing new formulations to address the crisis. Patients expressing COVID-19 are more susceptible to Mucormycosis (MCR) and thus fall easy prey to decease accounting for this global threat. Their mortality rates range around 32-70% depending on the organs affected and grow even higher despite the treatment. The many contemporary recommendations strongly advise using liposomal amphotericin B and surgery as first-line therapy whenever practicable. MCR is a dangerous infection that requires an antifungal drug administration on appropriate prescription, typically one of the following: Amphotericin B, Posaconazole, or Isavuconazole since the fungi that cause MCR are resistant to other medications like fluconazole, voriconazole, and echinocandins. Amphotericin B and Posaconazole are administered through veins (intravenously), and isavuconazole by mouth (orally). From last several years so many compounds are developed against invasive fungal disease but only few of them are able to induce effective treatment against the micorals. Adjuvant medicines, more particularly, are difficult to assess without prospective randomized controlled investigations, which are challenging to conduct given the lower incidence and higher mortality from Mucormycosis. The present analysis provides insight into pathogenesis, epidemiology, clinical manifestations, underlying fungal virulence, and growth mechanisms. In addition, current therapy for MCR in Post Covid-19 individuals includes conventional and novel nano-based advanced management systems for procuring against deadly fungal infection. The study urges involving nanomedicine to prevent fungal growth at the commencement of infection, delay the progression, and mitigate fatality risk.


Assuntos
COVID-19 , Mucormicose , Micoses , Humanos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Mucormicose/tratamento farmacológico , Virulência , Micoses/tratamento farmacológico
18.
Int J Biol Macromol ; 253(Pt 5): 127143, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37793512

RESUMO

A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/química , Materiais Biocompatíveis/química , Engenharia Tecidual , Peptídeos
19.
Travel Med Infect Dis ; 56: 102636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37633474

RESUMO

Monkeypox (Mpox) is a transmissible infection induced by the Monkeypox virus (a double-stranded DNA virus), recognised under the family orthopoxvirus genus. Monkeypox, like endemic diseases, is a substantial concern worldwide; thus, comprehending the pathogenesis and mutagenesis of amino acids is indispensable to combat the infection. According to the World Health Organization's report, about 89 thousand cases with 160 mortalities have been reported from 114 countries worldwide. The conventional orthopoxvirus vaccines developed on live attenuated viruses exempted any clinical validation from combating monkeypox due to inadequate immunogenicity, toxicity, instability, and multiple doses. Therefore, novel drug delivery systems come into the conception with high biological and mechanical characteristics to address the resurgence of Global Monkeypox. The edges of metallic biomaterials, novel molecules, and vaccine development in targeted therapy increase the modulation of the immune response and blockage of host-virus interaction, with enhanced stability for the antigens. Thus, this review strives to comprehend the viral cell pathogenesis concerning amino acid mutagenesis and current epidemiological standards of the Monkeypox disease across the globe. Furthermore, the review also recapitulates the various clinical challenges, current therapies, and progressive nanomedicine utilisation in the Monkeypox outbreak reinforced by various clinical trial reports. The contemporary challenges of novel drug delivery systems in Monkeypox treatment cannot be overlooked, and thus, authors have outlined the future strategies to develop successful nanomedicine to combat monkeypox. Future pandemics are inevitable but can be satisfactorily handled if we comprehend the crises, innovate, and develop cutting-edge technologies, especially by delving into frontiers like nanotechnology.


Assuntos
Mpox , Orthopoxvirus , Humanos , Mpox/tratamento farmacológico , Mpox/epidemiologia , Surtos de Doenças , Sistemas de Liberação de Medicamentos , Doenças Endêmicas , Monkeypox virus/genética
20.
Gels ; 8(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35877539

RESUMO

A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...