Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1198647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359368

RESUMO

Genome packaging is the crucial step for maturation of plant viruses containing an RNA genome. Viruses exhibit a remarkable degree of packaging specificity, despite the probability of co-packaging cellular RNAs. Three different types of viral genome packaging systems are reported so far. The recently upgraded type I genome packaging system involves nucleation and encapsidation of RNA genomes in an energy-dependent manner, which have been observed in most of the plant RNA viruses with a smaller genome size, while type II and III packaging systems, majorly discovered in bacteriophages and large eukaryotic DNA viruses, involve genome translocation and packaging inside the prohead in an energy-dependent manner, i.e., utilizing ATP. Although ATP is essential for all three packaging systems, each machinery system employs a unique mode of ATP hydrolysis and genome packaging mechanism. Plant RNA viruses are serious threats to agricultural and horticultural crops and account for huge economic losses. Developing control strategies against plant RNA viruses requires a deep understanding of their genome assembly and packaging mechanism. On the basis of our previous studies and meticulously planned experiments, we have revealed their molecular mechanisms and proposed a hypothetical model for the type I packaging system with an emphasis on smaller plant RNA viruses. Here, in this review, we apprise researchers the technical breakthroughs that have facilitated the dissection of genome packaging and virion assembly processes in plant RNA viruses.

2.
3 Biotech ; 12(3): 66, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35186663

RESUMO

Potato leafroll virus (PLRV) uses powerful molecular machines to package its genome into a viral capsid employing ATP as fuel. Although, recent bioinformatics and structural studies have revealed detailed mechanism of DNA packaging, little is known about the mechanochemistry of genome packaging in small plant viruses such as PLRV. We have identified a novel P-loop-containing ATPase domain with two Walker A-like motifs, two arginine fingers, and two sensor motifs distributed throughout the polypeptide chain of PLRV capsid protein (CP). The composition and arrangement of the ATP binding and hydrolysis domain of PLRV CP is unique and rarely reported. The discovery of the system sheds new light on the mechanism of viral genome packaging, regulation of viral assembly process, and evolution of plant viruses. Here, we used the RNAi approach to suppress CP gene expression, which in turn prevented PLRV genome packaging and assembly in Solanum tuberosum cv. Khufri Ashoka. Potato plants agroinfiltrated with siRNA constructs against the CP with ATPase domain exhibited no rolling symptoms upon PLRV infection, indicating that the silencing of CP gene expression is an efficient method for generating PLRV-resistant potato plants. In addition, molecular docking study reveals that the PLRV CP protein has ATP-binding pocket at the interface of each monomer. This further confirms that knockdown of the CP harboring ATP-binding domain could hamper the process of viral genome packaging and assembly. Moreover, our findings provide a robust approach to generate PLRV-resistant potato plants, which can be further extended to other species. Finally, we propose a new mechanism of genome packaging and assembly in plant viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...