Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839173

RESUMO

The facultative intracellular bacterial pathogen Francisella tularensis is the causative agent of tularemia in humans and animals. Gram-negative bacteria utilize two-component regulatory systems (TCS) to sense and respond to their changing environment. No classical, tandemly arranged sensor kinase and response regulator TCS genes exist in the human virulent Francisella tularensis subsp. tularensis, but orphaned members are present. PmrA is an orphan response regulator responsible for intramacrophage growth and virulence; however, the regulation of PmrA activity is not understood. We and others have shown that PmrA represses the expression of priM, described to encode an antivirulence determinant. By screening a mutant library for increased priM promoter activity, we identified the sensor kinase homolog QseC as an upstream regulator of priM expression, and this regulation is in part dependent upon the aspartate phosphorylation site of PmrA (D51). Several examined environmental signals, including epinephrine, which is reported to activate QseC in other bacteria, do not affect priM expression in a manner dependent on PmrA. Intramacrophage survival assays also question the finding that PriM is an antivirulence factor. Thus, these data suggest that the PmrA-regulated gene priM is modulated by the QseC-PmrA (QseB) TCS in FrancisellaIMPORTANCE The disease tularemia is caused by the highly infectious Gram-negative pathogen Francisella tularensis This bacterium encodes few regulatory factors (e.g., two-component systems [TCS]). PmrA, required for intramacrophage survival and virulence in the mouse model, is encoded by an orphan TCS response regulator gene. It is unclear how PmrA is responsive to environmental signals to regulate loci, including the PmrA-repressed gene priM We identify an orphan sensor kinase (QseC) that is required for priM repression and further explore both environmental signals that might regulate the QseC-PmrA TCS and the function of PriM.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella/enzimologia , Histidina Quinase/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Francisella/patogenicidade , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Virulência
3.
Artigo em Inglês | MEDLINE | ID: mdl-29963499

RESUMO

Francisella tularensis is the etiologic agent of tularemia, and subspecies tularensis (type A) is the most virulent subspecies. The live vaccine strain (LVS) of subspecies holarctica produces a capsule-like complex (CLC) that consists of a large variety of glycoproteins. Expression of the CLC is greatly enhanced when the bacteria are subcultured in and grown on chemically defined medium. Deletion of two genes responsible for CLC glycosylation in LVS results in an attenuated mutant that is protective against respiratory tularemia in a mouse model. We sought to further characterize the CLC composition and to determine if a type A CLC glycosylation mutant would be attenuated in mice. The CLCs isolated from LVS extracted with 0.5% phenol or 1 M urea were similar, as determined by gel electrophoresis and Western blotting, but the CLC extracted with urea was more water-soluble. The CLC extracted with either 0.5% phenol or 1 M urea from type A strains was also similar to the CLC of LVS in antigenic properties, electrophoretic profile, and by transmission electron microscopy (TEM). The solubility of the CLC could be further enhanced by fractionation with Triton X-114 followed by N-Lauroylsarcosine detergents; the largest (>250 kDa) molecular size component appeared to be an aggregate of smaller components. Outer membrane vesicles/tubules (OMV/T) isolated by differential centrifugation and micro-filtration appeared similar to the CLC by TEM, and many of the proteins present in the OMV/T were also identified in soluble and insoluble fractions of the CLC. Further investigation is warranted to assess the relationship between OMV/T and the CLC. The CLC conjugated to keyhole limpet hemocyanin or flagellin was highly protective against high-dose LVS intradermal challenge and partially protective against intranasal challenge. A protective response was associated with a significant rise in cytokines IL-12, IL-10, and IFN-γ. However, a type A CLC glycosylation mutant remained virulent in BALB/c mice, and immunization with the CLC did not protect mice against high dose respiratory challenge with type A strain SCHU S4.


Assuntos
Cápsulas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Francisella tularensis/metabolismo , Glicoproteínas/imunologia , Tularemia/imunologia , Tularemia/prevenção & controle , Vacinas Atenuadas/imunologia , Administração Intranasal , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/genética , Vacinas Bacterianas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Flagelina/genética , Flagelina/imunologia , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Genes Bacterianos/genética , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Hemocianinas/genética , Hemocianinas/imunologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Camundongos Endogâmicos BALB C , Mutagênese , Deleção de Sequência , Vacinação , Vacinas Atenuadas/genética , Vacinas Conjugadas/genética , Vacinas Conjugadas/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
4.
Front Microbiol ; 8: 935, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611741

RESUMO

Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. However, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locus in F. tularensis. Following daily subculture of F. novicida in Chamberlain's defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Δ1212-1218. The subcultured mutant F. novicida Δ1212-1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Δ1212-1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10-14 days post-challenge. Mice immunized intranasally with F. novicida Δ1212-1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas control mice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Therefore, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.

5.
PLoS One ; 8(2): e56834, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457625

RESUMO

Different Francisella spp. produce five or six predicted acid phosphatases (AcpA, AcpB, AcpC, AcpD, HapA and HapB). The genes encoding the histidine acid phosphatases (hapA, hapB) and acpD of F. tularensis subsp. Schu S4 strain are truncated or disrupted. However, deletion of HapA (FTT1064) in F. tularensis Schu S4 resulted in a 33% reduction in acid phosphatase activity and loss of the four functional acid phosphatases in F. tularensis Schu S4 (ΔABCH) resulted in a>99% reduction in acid phosphatase activity compared to the wild type strain. All single, double and triple mutants tested, demonstrated a moderate decrease in mouse virulence and survival and growth within human and murine phagocytes, whereas the ΔABCH mutant showed >3.5-fold decrease in intramacrophage survival and 100% attenuation of virulence in mouse. While the Schu S4 ΔABCH strain was attenuated in the mouse model, it showed only limited protection against wild type challenge. F. tularensis Schu S4 failed to stimulate reactive oxygen species production in phagocytes, whereas infection by the ΔABCH strain stimulated 5- and 56-fold increase in reactive oxygen species production in neutrophils and human monocyte-derived macrophages, respectively. The ΔABCH mutant but not the wild type strain strongly co-localized with p47 (phox) and replicated in macrophages isolated from p47 (phox) knockout mice. Thus, F. tularensis Schu S4 acid phosphatases, including the truncated HapA, play a major role in intramacrophage survival and virulence of this human pathogen.


Assuntos
Fosfatase Ácida/metabolismo , Francisella tularensis/enzimologia , Francisella tularensis/fisiologia , Fosfatase Ácida/deficiência , Fosfatase Ácida/genética , Animais , Feminino , Francisella tularensis/genética , Deleção de Genes , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/citologia , Monócitos/microbiologia , NADPH Oxidases/metabolismo , Neutrófilos/citologia , Neutrófilos/microbiologia , Fagossomos/microbiologia , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
6.
Infect Immun ; 80(3): 1088-97, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22184418

RESUMO

Francisella tularensis is a remarkably infectious facultative intracellular pathogen that causes the zoonotic disease tularemia. Essential to the pathogenesis of F. tularensis is its ability to escape the destructive phagosomal environment and inhibit the host cell respiratory burst. F. tularensis subspecies encode a series of acid phosphatases, which have been reported to play important roles in Francisella phagosomal escape, inhibition of the respiratory burst, and intracellular survival. However, rigorous demonstration of acid phosphatase secretion by intracellular Francisella has not been shown. Here, we demonstrate that AcpA, which contributes most of the F. tularensis acid phosphatase activity, is secreted into the culture supernatant in vitro by F. novicida and F. tularensis subsp. holarctica LVS. In addition, both F. novicida and the highly virulent F. tularensis subsp. tularensis Schu S4 strain are able to secrete and also translocate AcpA into the host macrophage cytosol. This is the first evidence of acid phosphatase translocation during macrophage infection, and this knowledge will greatly enhance our understanding of the functions of these enzymes in Francisella pathogenesis.


Assuntos
Fosfatase Ácida/metabolismo , Francisella tularensis/enzimologia , Francisella tularensis/patogenicidade , Macrófagos/microbiologia , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Humanos , Transporte Proteico
7.
Infect Immun ; 78(5): 2189-98, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20231408

RESUMO

Francisella tularensis subsp. tularensis is the etiologic agent of tularemia and has been designated a category A biothreat agent by the CDC. Tularemia is characterized by replication and dissemination within host phagocytes. Intramacrophage growth is dependent upon the regulation of Francisella pathogenicity island (FPI) virulence genes, which is poorly understood. Two-component regulatory systems (TCS) are widely employed by Gram-negative bacteria to monitor and respond to environmental signals. Virulent strains of F. tularensis subsp. tularensis are devoid of classical, tandemly arranged TCS genes, but orphaned members, such as that encoding the response regulator PmrA, have been identified. In the F. novicida model system, previous work has shown that a pmrA mutant shows decreased expression of FPI genes, is deficient for intramacrophage growth, and is avirulent in the mouse model. Here, we determine that phosphorylation aids PmrA binding to regulated promoters pmrA and the FPI-encoded pdpD, and KdpD is the histidine kinase primarily responsible for phosphorylation of PmrA at the aspartic acid at position 51 (D51). A strain expressing PmrA D51A retains some DNA binding but exhibits reduced expression of the PmrA regulon, is deficient for intramacrophage replication, and is attenuated in the mouse model. With regard to virulence gene induction, PmrA coprecipitates with the FPI transcription factors MglA and SspA, which bind RNA polymerase. Together, these data suggest a model of Francisella gene regulation that includes a TCS consisting of KdpD and PmrA. Once phosphorylated, PmrA binds to regulated gene promoters recruiting free or RNA polymerase-bound MglA and SspA to initiate FPI gene transcription.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella/patogenicidade , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Fatores de Virulência/biossíntese , Adesinas Bacterianas/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Feminino , Imunoprecipitação , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Análise de Sobrevida , Tularemia/microbiologia , Virulência
8.
J Immunol ; 184(9): 5141-50, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20348422

RESUMO

Francisella tularensis contains four putative acid phosphatases that are conserved in Francisella novicida. An F. novicida quadruple mutant (AcpA, AcpB, AcpC, and Hap [DeltaABCH]) is unable to escape the phagosome or survive in macrophages and is attenuated in the mouse model. We explored whether reduced survival of the DeltaABCH mutant within phagocytes is related to the oxidative response by human neutrophils and macrophages. F. novicida and F. tularensis subspecies failed to stimulate reactive oxygen species production in the phagocytes, whereas the F. novicida DeltaABCH strain stimulated a significant level of reactive oxygen species. The DeltaABCH mutant, but not the wild-type strain, strongly colocalized with p47(phox) and replicated in phagocytes only in the presence of an NADPH oxidase inhibitor or within macrophages isolated from p47(phox) knockout mice. Finally, purified AcpA strongly dephosphorylated p47(phox) and p40(phox), but not p67(phox), in vitro. Thus, Francisella acid phosphatases play a major role in intramacrophage survival and virulence by regulating the generation of the oxidative burst in human phagocytes.


Assuntos
Fosfatase Ácida/fisiologia , Francisella tularensis/enzimologia , Francisella tularensis/imunologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Fagócitos/microbiologia , Fosfatase Ácida/genética , Animais , Células Cultivadas , Francisella tularensis/crescimento & desenvolvimento , Humanos , Líquido Intracelular/enzimologia , Líquido Intracelular/imunologia , Líquido Intracelular/microbiologia , Isoenzimas/genética , Isoenzimas/fisiologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/biossíntese , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagócitos/imunologia , Fosforilação/imunologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/imunologia
9.
Front Microbiol ; 1: 129, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21687776

RESUMO

Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long-standing issue with potential Francisella vaccines is strain phase variation to a gray form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a gray variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the gray variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology. The LVSG strain demonstrated an intramacrophage survival defect in human and rat but not mouse macrophages. Consistent with this result, the LVSG variant demonstrated little change in LD(50) in the mouse model of infection. Furthermore, the LVSG strain lacks the protective capacity of F. tularensis LVS against virulent Type A challenge. These data suggest that the LPS of the F. tularensis LVSG phase variant is dramatically altered. Understanding the mechanism of blue to gray phase variation may lead to a way to inhibit this variation, thus making future F. tularensis vaccines more stable and efficacious.

10.
Front Microbiol ; 1: 144, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21687801

RESUMO

Francisella tularensis is one of the most virulent bacteria known and a Centers for Disease Control and Prevention Category A select agent. It is able to infect a variety of animals and insects and can persist in the environment, thus Francisella spp. must be able to survive in diverse environmental niches. However, F. tularensis has a surprising dearth of sensory and regulatory factors. Recent advancements in the field have identified new functions of encoded transcription factors and greatly expanded our understanding of virulence gene regulation. Here we review the current knowledge of environmental adaptation by F. tularensis, its transcriptional regulators and their relationship to animal virulence.

11.
J Biol Chem ; 285(8): 5171-7, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20028980

RESUMO

Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (K(i) = 380 +/- 160 microM) and 2-phosphoascorbate (K(i) = 3.2 +/- 0.85 microM) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Francisella tularensis/enzimologia , Macrófagos/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/fisiologia , Francisella tularensis/genética , Deleção de Genes , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
12.
PLoS One ; 3(6): e2487, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18575611

RESUMO

BACKGROUND: Francisella tularensis is a gram-negative coccobacillus that causes the febrile illness tularemia. Subspecies that are pathogenic for humans include those comprising the type A (subspecies tularensis) or type B (subspecies holarctica) biovars. An attenuated live vaccine strain (LVS) developed from a type B isolate has previously been used to vaccinate at-risk individuals, but offers limited protection against high dose (>1000 CFUs) challenge with type A strains delivered by the respiratory route. Due to differences between type A and type B F. tularensis strains at the genetic level, it has been speculated that utilization of an attenuated type A strain as a live vaccine might offer better protection against homologous respiratory challenge compared with LVS. Here, we report the construction and characterization of an unmarked Delta purMCD mutant in the highly virulent type A strain Schu S4. METHODOLOGY/PRINCIPAL FINDINGS: Growth of Schu S4 Delta purMCD was severely attenuated in primary human peripheral blood monocyte-derived macrophages and in the A549 human lung epithelial cell line. The Schu S4 Delta purMCD mutant was also highly attenuated in mice when delivered via either the intranasal or intradermal infection route. Mice vaccinated intranasally with Schu S4 Delta purMCD were well protected against high dose intradermal challenge with virulent type A or type B strains of F. tularensis. However, intranasal vaccination with Schu S4 Delta purMCD induced tissue damage in the lungs, and conferred only limited protection against high dose Schu S4 challenge delivered by the same route. The level of protection observed was similar to that conferred following vaccination with wild-type LVS or the analogous LVS Delta purMCD mutant. CONCLUSIONS/SIGNIFICANCE: Collectively, these results argue that development of the next generation live attenuated vaccine for Francisella should be based on use of the less pathogenic type B biovar rather than the more reactogenic type A biovar.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Purinas/imunologia , Administração Intranasal , Animais , Vacinas Bacterianas/administração & dosagem , Linhagem Celular , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Humanos , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Mutação , Virulência
13.
Infect Immun ; 76(8): 3690-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18490464

RESUMO

Francisella tularensis is a facultative intracellular pathogen and the etiologic agent of tularemia. It is capable of escape from macrophage phagosomes and replicates in the host cell cytosol. Bacterial acid phosphatases are thought to play a major role in the virulence and intracellular survival of a number of intracellular pathogens. The goal of this study was to delete the four primary acid phosphatases (Acps) from Francisella novicida and examine the interactions of mutant strains with macrophages, as well as the virulence of these strains in mice. We constructed F. novicida mutants with various combinations of acp deletions and showed that loss of the four Acps (AcpA, AcpB, AcpC, and histidine acid phosphatase [Hap]) in an F. novicida strain (DeltaABCH) resulted in a 90% reduction in acid phosphatase activity. The DeltaABCH mutant was defective for survival/growth within human and murine macrophage cell lines and was unable to escape from phagosome vacuoles. With accumulation of Acp deletions, a progressive loss of virulence in the mouse model was observed. The DeltaABCH strain was dramatically attenuated and was an effective single-dose vaccine against homologous challenge. Furthermore, both acpA and hap were induced when the bacteria were within host macrophages. Thus, the Francisella acid phosphatases cumulatively play an important role in intracellular trafficking and virulence.


Assuntos
Fosfatase Ácida/genética , Proteínas de Bactérias/genética , Francisella tularensis/enzimologia , Francisella tularensis/patogenicidade , Macrófagos/microbiologia , Fagossomos/microbiologia , Fatores de Virulência/genética , Animais , Linhagem Celular , Contagem de Colônia Microbiana , Feminino , Francisella tularensis/genética , Francisella tularensis/crescimento & desenvolvimento , Deleção de Genes , Ordem dos Genes , Humanos , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/microbiologia , Análise de Sobrevida , Virulência
14.
Infect Immun ; 75(7): 3305-14, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17452468

RESUMO

Francisella tularensis is a category A agent of biowarfare/biodefense. Little is known about the regulation of virulence gene expression in Francisella spp. Comparatively few regulatory factors exist in Francisella, including those belonging to two-component systems (TCS). However, orphan members of typical TCS can be identified. To determine if orphan TCS members affect Francisella gene expression, a gene encoding a product with high similarity to the Salmonella PmrA response regulator (FTT1557c/FNU0663.2) was deleted in Francisella novicida (a model organism for F. tularensis). The F. novicida pmrA mutant was defective in survival/growth within human and murine macrophage cell lines and was 100% defective in virulence in mice at a dose of up to 10(8) CFU. In addition, the mutant strain demonstrated increased susceptibility to antimicrobial peptide killing, but no differences were observed between the lipid A of the mutant and the parental strain, as has been observed with pmrA mutants of other microbes. The F. novicida pmrA mutant was 100% protective as a single-dose vaccine when challenge was with 10(6) CFU of F. novicida but did not protect against type A Schu S4 wild-type challenge. DNA microarray analysis identified 65 genes regulated by PmrA. The majority of these genes were located in the region surrounding pmrA or within the Francisella pathogenicity island (FPI). These FPI genes are also regulated by MglA, but MglA does not regulate pmrA, nor does PmrA regulate MglA. Thus, the orphan response regulator PmrA is an important factor in controlling virulence in F. novicida, and a pmrA mutant strain is an effective vaccine against homologous challenge.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella/patogenicidade , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas/genética , Transdução de Sinais , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Linhagem Celular , Feminino , Francisella/genética , Francisella/imunologia , Francisella/metabolismo , Perfilação da Expressão Gênica , Ilhas Genômicas/fisiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Virulência
15.
Infect Immun ; 75(1): 390-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17060465

RESUMO

AcpA of Francisella spp. is a respiratory-burst-inhibiting acid phosphatase that also exhibits phospholipase C activity. To better understand the molecular basis of AcpA in virulence, a deletion of acpA was constructed in Francisella novicida. The phosphatase and lipase activities were reduced 10-fold and 8-fold, respectively, in the acpA mutant compared to the wild type and were found mostly associated with the outer membrane. The acpA mutant was more susceptible to intracellular killing than the wild-type strain in the THP-1 human macrophage-like cell line. In addition, mice infected with the acpA mutant survived longer than the wild-type strain and were less fit than the wild-type strain in competition infection assays. Transmission electron microscopy showed that the acpA mutant was delayed in escape from macrophage phagosomes, as more than 75% of acpA mutant bacteria could still be found inside phagosomes after 12 h of infection in THP-1 cells and human monocyte-derived macrophages, whereas most of the wild-type bacteria had escaped from the phagosome by 6 h postinfection. Thus, AcpA affects intracellular trafficking and the fate of Francisella within host macrophages.


Assuntos
Fosfatase Ácida/imunologia , Proteínas de Bactérias/imunologia , Francisella/patogenicidade , Macrófagos/imunologia , Macrófagos/microbiologia , Fosfatase Ácida/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Sobrevivência Celular , Feminino , Francisella/enzimologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Fagossomos/imunologia , Fagossomos/microbiologia , Reação em Cadeia da Polimerase , Virulência
16.
Infect Immun ; 74(9): 5114-25, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16926403

RESUMO

Inhalational pneumonic tularemia, caused by Francisella tularensis, is lethal in humans. F. tularensis is phagocytosed by macrophages followed by escape from phagosomes into the cytoplasm. Little is known of the phagocytic mechanisms for Francisella, particularly as they relate to the lung and alveolar macrophages. Here we examined receptors on primary human monocytes and macrophages which mediate the phagocytosis and intracellular survival of F. novicida. F. novicida association with monocyte-derived macrophages (MDM) was greater than with monocytes. Bacteria were readily ingested, as shown by electron microscopy. Bacterial association was significantly increased in fresh serum and only partially decreased in heat-inactivated serum. A role for both complement receptor 3 (CR3) and Fcgamma receptors in uptake was supported by studies using a CR3-expressing cell line and by down-modulation of Fcgamma receptors on MDM, respectively. Consistent with Fcgamma receptor involvement, antibody in nonimmune human serum was detected on the surface of Francisella. In the absence of serum opsonins, competitive inhibition of mannose receptor (MR) activity on MDM with mannan decreased the association of F. novicida and opsonization of F. novicida with lung collectin surfactant protein A (SP-A) increased bacterial association and intracellular survival. This study demonstrates that human macrophages phagocytose more Francisella than monocytes with contributions from CR3, Fcgamma receptors, the MR, and SP-A present in lung alveoli.


Assuntos
Francisella tularensis/imunologia , Macrófagos/microbiologia , Pneumonia Bacteriana/imunologia , Receptores de Superfície Celular/fisiologia , Tularemia/imunologia , Anticorpos Antibacterianos/sangue , Francisella tularensis/ultraestrutura , Humanos , Lectinas Tipo C/fisiologia , Ligantes , Pulmão/imunologia , Antígeno de Macrófago 1/fisiologia , Macrófagos/imunologia , Receptor de Manose , Lectinas de Ligação a Manose/fisiologia , Microscopia Eletrônica de Transmissão , Monócitos/imunologia , Monócitos/microbiologia , Fagocitose , Proteína A Associada a Surfactante Pulmonar/fisiologia , Receptores de IgG/fisiologia , Soro/imunologia
17.
PLoS Pathog ; 2(7): e71, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16848641

RESUMO

Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL)-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP) is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.


Assuntos
Francisella , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo , Inositol Polifosfato 5-Fosfatases , Interleucina-10/biossíntese , Camundongos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Appl Environ Microbiol ; 72(1): 327-33, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16391061

RESUMO

This report describes the construction and characterization of a mariner-based transposon system designed to be used in Bacillus subtilis, but potentially applicable to other gram-positive bacteria. Two pUC19-derived plasmids were created that contain the mariner-Himar1 transposase gene, modified for expression in B. subtilis, under the control of either sigmaA- or sigmaB-dependent promoters. Both plasmids also contain a transposable element (TnYLB-1) consisting of a Kan r cassette bracketed by the Himar1-recognized inverse terminal repeats, as well as the temperature-sensitive replicon and Erm r gene of pE194ts. TnYLB-1 transposes into the B. subtilis chromosome with high frequency (10(-2)) from either plasmid. Southern hybridization analyses of 15 transposants and sequence analyses of the insertion sites of 10 of these are consistent with random transposition, requiring only a "TA" dinucleotide as the essential target in the recipient DNA. Two hundred transposants screened for sporulation proficiency and auxotrophy yielded five Spo- clones, three with insertions in known sporulation genes (kinA, spoVT, and yqfD) and two in genes (ybaN and yubB) with unknown functions. Two auxotrophic mutants were identified among the 200 transposants, one with an insertion in lysA and another in a gene (yjzB) whose function is unknown.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Elementos de DNA Transponíveis/genética , Mutagênese Insercional/métodos , Sequência de Bases , Contagem de Colônia Microbiana , Dados de Sequência Molecular , Mutação , Plasmídeos/genética , Análise de Sequência de DNA , Esporos Bacterianos/genética , Transposases/genética , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...