Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Talanta ; 275: 126139, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696900

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic that continues to be a global menace and since its emergence in the late 2019, SARS-CoV-2 has been vigorously spreading throughout the globe putting the whole world into a multidimensional calamity. The suitable diagnosis strategies are on the front line of the battle against preventing the spread of infections. Since the clinical manifestation of COVID-19 is shared between various diseases, detection of the unique impacts of the pathogen on the host along with the diagnosis of the virus itself should be addressed. Employing the most suitable approaches to specifically, sensitively and effectively recognize the infected cases may be a real game changer in controlling the outbreak and the crisis management. In that matter, point-of-care assays (POC) appears to be the potential option, due to sensitivity, specificity, affordable, and availability. Here we brief the most recent findings about the virus, its variants, and the conventional methods that have been used for its detection, along with the POC strategies that have been applied to the virus diagnosis and the developing technologies which can accelerate the diagnosis procedure yet maintain its efficiency.

2.
Cytokine ; 175: 156495, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184893

RESUMO

Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.


Assuntos
COVID-19 , RNA Longo não Codificante , Humanos , Biomarcadores , COVID-19/genética , Citocinas/genética , Citocinas/metabolismo , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
3.
Sci Total Environ ; 912: 169575, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38143000

RESUMO

Considering the major role of vegetables in the transmission of gastrointestinal diseases, investigation of the presence of gastrointestinal viruses is particularly important for public health. Additionally, monitoring and investigating potential points of contamination at various stages of cultivation, harvesting, and distribution can be important in identifying the sources of transmission. This study was conducted with the aim of identifying norovirus, adenovirus, hepatitis A virus, hepatitis E virus, rotaviruses, and astroviruses in vegetable samples from the fields and fruit and vegetable centers of Tehran City, and to investigate their presence in irrigation water by RT-qPCR. This study was carried out in two phases: initial and supplementary. During phase I, a total of 3 farms and 5 fruit and vegetable centers and a total of 35 samples from farms, 102 samples from fruit and vegetable centers and 8 agricultural water samples were collected. Zero, 16 and 1 samples were positive for at least one of the viruses from each of the sources, respectively. During phase II, 88 samples from 23 farms, 226 samples from 50 fruit and vegetable centers and 16 irrigation water samples were collected, with 23, 57 and 4 samples were positive for at least one virus, respectively. Rotavirus was the most frequently identified virus among the samples, followed by NoV GII, NoV GI, AstV, and AdV. HAV and HEV were not detected in any of the tested samples. The results of this study suggest that there may be a wide presence of viruses in vegetables, farms, and fruit and vegetable centers in Tehran City, which could have significant consequences considering the fact that many of these foods are consumed raw. Additionally, the detection of some of these viruses in irrigation water suggests that this may be a potential route for viral contamination of produce.


Assuntos
Enterovirus , Vírus da Hepatite E , Rotavirus , Vírus , Humanos , Água , Fazendas , Irã (Geográfico) , Adenoviridae , Verduras
4.
Front Microbiol ; 14: 1256042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869674

RESUMO

Introduction: Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods: Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results: The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion: cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.

5.
Gastroenterol Hepatol Bed Bench ; 16(3): 270-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767323

RESUMO

Acute pancreatitis, a potentially fatal disease, with symptoms including nausea and/or vomiting, indigestion, and abdominal pain, is known to range from a mild self-limiting state up to a more severe and lethal form. This review aims to provide a clearer picture to improve understanding the role of viral agents in the development of acute pancreatitis. Common databases including PubMed, Google Scholar, and Scopus were used for the literature search. In this review search terms including virus, viral, infection, and specific descriptive terms for a virus were considered in different combinations. Various causative agents are recognized in the development of acute pancreatitis as one of the most frequent gastrointestinal diseases, such as gallstones, alcoholism, and hypertriglyceridemia. Microbial pathogens with about 10% of acute pancreatitis cases, mainly viruses, among other factors, are thought to play a role in this regard. Once the pancreatitis diagnosis has been made, depending on the causative agent, the management approach and specific interventions affect the final outcome. Virus-induced acute pancreatitis in patients should be considered. Advanced diagnostic tests such as PCR, in situ hybridization, and biopsy can help for a better understanding of the role of viruses in causing acute pancreatitis. Improvement in the tests will lead to timely diagnosis, treatment, and better management of pancreatitis.

6.
Front Cell Infect Microbiol ; 13: 1228275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692170

RESUMO

Since December 2019, the world has been facing viral pandemic called COVID-19 (Coronavirus disease 2019) caused by a new beta-coronavirus named severe acute respiratory syndrome coronavirus-2, or SARS-CoV-2. COVID-19 patients may present with a wide range of symptoms, from asymptomatic to requiring intensive care support. The severe form of COVID-19 is often marked by an altered immune response and cytokine storm. Advanced age, age-related and underlying diseases, including metabolic syndromes, appear to contribute to increased COVID-19 severity and mortality suggesting a role for mitochondria in disease pathogenesis. Furthermore, since the immune system is associated with mitochondria and its damage-related molecular patterns (mtDAMPs), the host mitochondrial system may play an important role during viral infections. Viruses have evolved to modulate the immune system and mitochondrial function for survival and proliferation, which in turn could lead to cellular stress and contribute to disease progression. Recent studies have focused on the possible roles of mitochondria in SARS-CoV-2 infection. It has been suggested that mitochondrial hijacking by SARS-CoV-2 could be a key factor in COVID-19 pathogenesis. In this review, we discuss the roles of mitochondria in viral infections including SARS-CoV-2 infection based on past and present knowledge. Paying attention to the role of mitochondria in SARS-CoV-2 infection will help to better understand the pathophysiology of COVID-19 and to achieve effective methods of prevention, diagnosis, and treatment.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Mitocôndrias , Cuidados Críticos , Síndrome da Liberação de Citocina
7.
Virus Res ; 336: 199214, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657511

RESUMO

The current outbreak of coronavirus disease 2019 (COVID-19) is a global emergency, as its rapid spread and high mortality rate, which poses a significant threat to public health. Innate immunity plays a crucial role in the primary defense against infections, and recent studies have highlighted the pivotal regulatory function of long non-coding RNAs (lncRNAs) in innate immune responses. This study aims to assess the circulating levels of lncRNAs namely ANRIL, THRIL, NEAT1, and MALAT1 in the blood of moderate and severe SARS-CoV-2 infected patients, in comparison to healthy individuals. Additionally, it aims to explore the potential of these lncRNAs as biomarkers for determining the severity of the disease. The blood samples were collected from a total of 38 moderate and 25 severe COVID-19 patients, along with 30 healthy controls. The total RNA was extracted and qPCR was performed to evaluate the blood levels of the lncRNAs. The results indicate significantly higher expression levels of lncRNAs ANRIL and THRIL in severe patients when compared to moderate patients (P value = 0.0307, P value = 0.0059, respectively). Moreover, the expression levels of lncRNAs ANRIL and THRIL were significantly up-regulated in both moderate and severe patients in comparison to the control group (P value < 0.001, P value < 0.001, P value = 0.001, P value < 0.001, respectively). The expression levels of lncRNA NEAT1 were found to be significantly higher in both moderate and severe COVID-19 patients compared to the healthy group (P value < 0.001, P value < 0.001, respectively), and there was no significant difference in the expression levels of NEAT1 between moderate and severe patients (P value = 0.6979). The expression levels of MALAT1 in moderate and severe patients did not exhibit a significant difference compared to the control group (P value = 0.677, P value = 0.764, respectively). Furthermore, the discriminative power of ANRIL and THRIL was significantly higher in the severe patient group than the moderate group (Area under curve (AUC) = 0.6879; P-value = 0.0122, AUC = 0.6947; P-value = 0.0093, respectively). In conclusion, the expression levels of the lncRNAs ANRIL and THRIL are correlated with the severity of COVID-19 and can be regarded as circulating biomarkers for disease progression.

8.
Front Microbiol ; 14: 1213145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588887

RESUMO

Hepatocellular carcinoma (HCC) is a significant global health issue, with a high prevalence in many regions. There are variations in the etiology of HCC in different regions, but most cases are due to long-term infection with viral hepatitis. Hepatitis B virus (HBV) is responsible for more than 50% of virus-related HCC, which highlights the importance of HBV in pathogenesis of the disease. The development and progression of HBV-related HCC is a complex multistep process that can involve host, viral, and environmental factors. Several studies have suggested that some HBV genome mutations as well as HBV proteins can dysregulate cell signaling pathways involved in the development of HCC. Furthermore, it seems that the pathogenicity, progression of liver diseases, response to treatment and also viral replication are different among HBV mutants. Understanding the relationship between HBV genome variations and host signaling pathway alteration will improve our understanding of the molecular pathogenesis of HBV-related HCC. Furthermore, investigating commonly dysregulated pathways in HBV-related HCC is necessary to discover more specific therapeutic targets and develop more effective strategies for HCC treatment. The objective of this review is to address the role of HBV in the HCC progression and primarily focus on the impacts of HBV genome variations on HCC-related signaling pathways.

9.
Genet Test Mol Biomarkers ; 27(8): 232-238, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37643324

RESUMO

Background: MicroRNAs regulate many biological processes and are involved in the pathogenesis of many diseases including chronic hepatitis B (CHB). Moreover, besides investigation of their roles in hepatitis B virus (HBV) infection, a noninvasive, sensitive, and specific biomarker is essential in the diagnosis of liver diseases. This study was designed to evaluate the role of miR-122, miR-583, and miR-24 in the pathogenesis of CHB both in active chronic hepatitis (ACH) patients and in inactive carriers (IC). Materials and Methods: Plasma samples and all relevant clinical features were collected from 43 patients with CHB (28 ACH and 15 IC) and 43 healthy controls. Quantitative real-time PCR was performed to detect the plasma levels of miR-122, miR-583, and miR-24. Results: Results show miR-122 (p = 0.0001) and miR-583 (p = 0.006) but not miR-24 (p = 0.65) were upregulated in patients with CHB versus the control group. Interestingly, there was a significant increase in the plasma expression of miR-583 in IC versus ACH. Moreover, receiver operating characteristic curve analysis determined plasma levels of miR-122 (area under the ROC curve [AUC] = 0.89, p < 0.0001, sensitivity: 100%, specificity: 62.5%) and miR-583 (AUC = 0.71, p = 0.0007, sensitivity: 90%, specificity: 47.62%) as sensitive biomarkers to discriminate CHB patients from controls. Conclusion: Our data showed an increase in the plasma levels of miR-583 in IC versus ACH patients. Moreover, we demonstrated that miR-122 and miR-583 may serve as potential biomarkers for CHB diagnosis and activity.


Assuntos
Hepatite B Crônica , MicroRNAs , Humanos , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/genética , MicroRNAs/genética , Área Sob a Curva , Vírus da Hepatite B/genética , Plasma
10.
Gut Pathog ; 15(1): 21, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161478

RESUMO

Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.

11.
Gastroenterol Hepatol Bed Bench ; 16(1): 520-523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070108

RESUMO

Aim: Development of an amplification method for further investigation of HBV S gene variation patterns. Background: Pre-S/S variants in patients with chronic HBV infection may contribute to the progression of liver damage and Hepatocellular carcinoma (HCC). Methods: This study was performed on ten patients with chronic HBV infection. Viral DNA was extracted from patient's plasma, primer design was performed, and a semi-nested PCR method was set up to amplify the pre-S/S region of HBV genome. Subsequently, sequencing was performed to analyze the variants of this region. Results: In the current study, the semi-nested PCR method was successfully set up, and types of variation in the studied samples were investigated. Conclusion: Pre-S/S variants should be routinely determined in HBV carriers to help identify individuals who may be at a high risk of less favorable liver disease progression. This study showed that the technique could accurately amplify the pre-S/S region, and the product can be successfully used for variation detection by direct sequencing.

13.
Virus Genes ; 59(3): 351-358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36757510

RESUMO

Epstein-Barr virus (EBV) associated gastric carcinoma (EBVaGC) is a subtype of gastric cancer with distinct histological and molecular features. The study aimed to assess the EBV DNA copy number and the prevalence of EBVaGC in gastric cancer samples taken from Iranian patients. The next aim was to assess whether the DNA and microRNAs EBV are present in plasma. EBV load was analyzed in 68 gastric cancer biopsies and compared with the results of EBV-encoded small RNA in situ hybridization (EBER-ISH) test in these patients. After the detection of 6 EBV miRNAs in gastric tissue by stem-loop RT-PCR, plasma samples were evaluated for the viral load and EBV miRNAs. Four gastric cancer cases were EBER -ISH positive (5.8%), with a significantly higher viral load than the remaining cases, 47,781 vs. 1909 copies/µg of tissue DNA. Here, was also found a significant difference in plasma EBV load between EBER-positive and EBER-negative cases. Although EBV miRNAs were detectable in all the EBER-positive tumors, the test did not detect any of these miRNAs among the plasma samples tested. Our data indicate that the prevalence of EBVaGC among Iranian patients with gastric cancer is lower than the global prevalence and although none of the EBV miRNAs were detected in plasma, evaluation of EBV microRNAs in tumor tissue, especially miR-BART7-3p, may constitute useful biomarkers for diagnosis of EBVaGC.


Assuntos
Infecções por Vírus Epstein-Barr , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Herpesvirus Humano 4/genética , Irã (Geográfico)/epidemiologia , RNA Viral/genética , MicroRNAs/genética , DNA Viral/genética , Biópsia
14.
Redox Biol ; 59: 102563, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36493512

RESUMO

BACKGROUND: The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD: The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS: CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION: SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Leucócitos Mononucleares/metabolismo , Oxirredução , Inflamação
15.
Front Public Health ; 10: 823061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211691

RESUMO

The SARS-CoV-2 pandemic has and continues to impose a considerable public health burden. Although not likely foodborne, SARS-CoV-2 transmission has been well documented in agricultural and food retail environments in several countries, with transmission primarily thought to be worker-to-worker or through environmental high touch surfaces. However, the prevalence and degree to which SARS-CoV-2 contamination occurs in such settings in Iran has not been well documented. Furthermore, since SARS-CoV-2 has been observed to be shed in the feces of some infected individuals, wastewater has been utilized as a means of surveilling the occurrence of SARS-CoV-2 in some regions. This study aimed to investigate the presence of SARS-CoV-2 RNA along the food production and retail chain, from wastewater and irrigation water to vegetables in field and sold in retail. From September 2020 to January 2021, vegetables from different agricultural areas of Tehran province (n = 35), their irrigated agricultural water (n = 8), treated wastewater mixed into irrigated agricultural water (n = 8), and vegetables collected from markets in Tehran (n = 72) were tested for the presence of SARS-CoV-2 RNA. The vegetable samples were washed with TGBE buffer and concentrated with polyethylene glycol precipitation, while water samples were concentrated by an adsorption-elution method using an electronegative filter. RT-qPCR targeting the SARS-CoV-2 N and RdRp genes was then conducted. SARS-CoV-2 RNA was detected in 51/123 (41.5%) of the samples overall. The presence of SARS-CoV-2 RNA in treated wastewater, irrigation water, field vegetables, and market produce were 75, 37.5, 42.85, and 37.5%, respectively. These results indicate that SARS-CoV-2 RNA is present in food retail and may also suggest that produce can additionally be contaminated with SARS-CoV-2 RNA by agricultural water. This study demonstrates that SARS-CoV-2 RNA was detected in waste and irrigation water, as well as on produce both in field and at retail. However, more evidence is needed to understand if contaminated irrigation water causes SARS-CoV-2 RNA contamination of produce, and if there is a significant public health risk in consuming this produce.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Irã (Geográfico) , Polietilenoglicóis , RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética , Verduras , Águas Residuárias , Água
16.
Gastroenterol Hepatol Bed Bench ; 15(3): 225-231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311962

RESUMO

Aim: The current study aimed to investigate sequence variations in the C-terminus of latent membrane protein 1 (LMP1) in Epstein-Barr virus (EBV) isolates from Iranian patients with chronic gastritis or gastric cancer (GC). Background: LMP1, an essential viral oncoprotein, is the critical element in the immortalization of B cells. It contains a small twenty-four amino acid cytoplasmic N-terminal region, six transmembrane segments, and a two hundred amino acid cytoplasmic C-terminal domain. Most LMP1-mediated signal transduction events are moderated by some functional parts of the cytoplasmic C-terminal domain. Methods: Thirty-two EBV-positive biopsy tissues were obtained from patients with gastric cancer and patients with chronic gastritis. The C-terminal nucleotide sequences of LMP1 were amplified using nested-PCR and analyzed by DNA sequencing. Results: Four to eight copies of the 11 repeat elements (codon 254-302) were observed in the carboxyl-terminal site of patients, but no relationship was found between the number of repeat sequences and disease status. The 30-bp deletion corresponding to codon 345-354 of the B95-8 strain was observed in 34% of isolates, and the remaining samples were non-deleted. In the gastric cancer group, a higher number of 33-bp repeats (≥5 repeats) was observed in 30-bp-deletion (100%) than in non-deleted (42%) isolates, and the difference was statistically significant. Analysis revealed that a gastritis isolate may be the result of recombination between Alaskan and China1 strains. Conclusion: Overall, the current results showed no association between C-terminal sequence variations of LMP1 and malignant or non-malignant isolate origin.

17.
Front Mol Biosci ; 9: 865129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836936

RESUMO

Coronavirus disease 2019 (COVID19), caused by the severe acute respiratory syndrome coronavirus 2 (SARSCoV2), was first discovered in China in late 2019 and quickly spread worldwide. Although nasopharyngeal swab sampling is still the most popular approach identify SARS-CoV-2 carriers, other body samples may reveal the virus genome, indicating the potential for virus transmission via non-respiratory samples. In this study, researchers looked at the presence and degree of SARS-CoV-2 genome in stool and plasma samples from 191 Iranian COVID-19 patients, and looked for a link between these results and the severity of their disease. SARS-CoV-2 RNA shedding in feces and plasma of COVID-19 patients was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Medical data were collected and evaluated, including Clinical features, demographics, radiological, and laboratory findings of the patients. Plasma samples from 117 confirmed laboratory patients were evaluated and 24 out of 117 patients (20.51%) tested positive for SARS-COV-2 RNA. Besides, 20 out of 74 patients (27.03%) tested positive for SARS-COV-2 RNA in stool samples. There seems to be no relationship between the presence of SARS-CoV-2 genome in fecal and plasma samples of Covid-19 patients and the severity of illness. We provide evidence of the SARS-CoV-2 genome presence in stool and plasma samples of Iranian COVID-19 patients.

18.
Microbiol Immunol ; 66(8): 379-385, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35674215

RESUMO

Human herpes viruses (HHVs) are among the most common infectious agents detected in the gastrointestinal tract that might be involved in oncogenesis and other gastrointestinal disorders. Although the link between the Epstein-Barr virus (EBV) and gastric cancer (GC) has been established, the role of the viruses in various stomach diseases remains unknown. The frequencies and viral copy number of EBV, cytomegalovirus (CMV), and human herpesvirus 6 (HHV-6) among 50 gastric cancer tumors and 105 chronic gastritis tissues were measured by quantitative real-time PCR. In the tumor specimens and the adjacent normal tissues EBV was found in 60% and 30.9%, CMV in 14% and 4.7%, and HHV-6 in 18%, and 14.2%, respectively. The detection rate of EBV and CMV was found to be significantly higher in tumor tissues relative to the adjacent normal tissues. Also, in chronic gastritis, the frequency of EBV, CMV, and HHV-6 was 19%, 12.3%, and 15.2%, respectively, compared with 16.4%, 1.1%, and 8.2% in their corresponding normal tissues. Here, the CMV frequency was found to be significantly higher in gastritis tissues relative to the adjacent normal tissues. Furthermore, viral load in both gastric cancer and gastritis groups was higher in either tumor or gastritis lesion compared with matched adjacent normal tissue. This study showed a clear association between gastric cancer with both EBV and CMV. Meanwhile, analyses revealed a strong association between the EBV, CMV, and HHV-6 viral loads with gastritis (P = 0.0026, P < 0.0001, and P = 0.0405, respectively). Our results suggest that these three viruses might contribute to the induction and development the gastritis and gastric cancer.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Gastrite , Herpesvirus Humano 6 , Neoplasias Gástricas , Citomegalovirus/genética , DNA Viral/análise , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Gastrite/complicações , Herpesvirus Humano 4/genética , Herpesvirus Humano 6/genética , Humanos , Neoplasias Gástricas/complicações
19.
Virol J ; 19(1): 106, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752792

RESUMO

BACKGROUND: MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer. However, the restricted immunogenicity has limited their clinical applications individually. To address this deficiency, we investigated whether combining the E7 DNA vaccine with MDA-7/IL-24 as an adjuvant would elicit efficient antitumor responses in tumor-bearing mouse models. Next, we evaluated how suppression of immunosuppressive IL-10 cytokine would enhance the outcome of our candidate adjuvant vaccine. METHODS: For this purpose, tumor-bearing mice received either E7 DNA vaccine, MDA-7/IL-24 cytokine or combination of E7 vaccine with MDA-7/IL-24 adjuvant one week after tumor challenge and boosted two times with one-week interval. IL-10 blockade was performed by injection of anti-IL-10 mAb before each immunization. One week after the last immunization, mice were sacrificed and the treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, the condition of tumors was monitored every two days for six weeks intervals from week 2 on, and the tumor volume was measured and compared within different groups. RESULTS: A highly significant synergistic relationship was observed between the E7 DNA vaccine and the MDA-7/IL-24 cytokine against HPV-16+ cervical cancer models. An increase in proliferation of lymphocytes, cytotoxicity of CD8+ T cells, the level of Th1 cytokines (IFN-γ, TNF-α) and IL-4, the level of apoptotic markers (TRAIL and caspase-9), and a decrease in the level of immunosuppressive IL-10 cytokine, together with the control of tumor growth and the induction of tumor regression, all prove the efficacy of adjuvant E7&IL-24 vaccine when compared to their individual administration. Surprisingly, vaccination with the DNA E7&IL-24 significantly reduced the population of Regulatory T cells (Treg) in the spleen of immunized mice compared to sole administration and control groups. Moreover, IL-10 blockade enhanced the effect of the co-administration by eliciting higher levels of IFN-γ and caspase-9, reducing Il-10 secretion and provoking the regression of tumor size. CONCLUSION: The synergy between the E7 DNA vaccine and MDA-7/IL-24 suggests that DNA vaccines' low immunogenicity can be effectively addressed by coupling them with an immunoregulatory agent. Moreover, IL-10 blockade can be considered a complementary treatment to improve the outcome of conventional or novel cancer therapies.


Assuntos
Vacinas Anticâncer , Interleucinas/imunologia , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas de DNA , Adjuvantes Imunológicos , Animais , Linfócitos T CD8-Positivos , Vacinas Anticâncer/genética , Caspase 9 , Citocinas/metabolismo , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/genética
20.
Arch Physiol Biochem ; : 1-8, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35617972

RESUMO

Context: Patients with inflammatory bowel disease (IBD) were found to have the higher intestinal expression of Angiotensin-Converting Enzyme2 (ACE2) that could consequently increase susceptibility to COVID-19 infection.Objective: This study reports the outcomes of COVID-19 infection in a large cohort of IBD patients. We compare levels of serum ACE and IFN-α between COVID19 patients with and without IBD. We performed a cross-sectional retrospective multicenter study.Methods: We enrolled patients with IBD screened for SARS-COV-2 in six medical centres in Iran from June to November 2020. The blood samples were drawn to measure COVID-19 IgM and IgG, and serum levels of sACE2, sACE1, and interferon-α, regardless of suspicious symptoms have done the molecular test.Results: A total of 534 IBD patients were included in the study. Of these, 109 (20.0%) cases had detectable IgG and IgM against SARS-CoV-2. sACE2 levels were higher in IBD patients than controls, whereas ACE1and IFN-α levels were similar among groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...