Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591608

RESUMO

The present work aims to provide corrosion performance data for an additively manufactured Ti6Al4V alloy in saline and polluted environments. The as-received additively manufactured material underwent heat treatment at 850 °C for 3 h to transform the acicular α' microstructure into a lamellar α microstructure. Comparative corrosion assessments were conducted between the heat-treated substrates, the as-received condition, and a conventionally mill-annealed alloy. Potentiodynamic polarization experiments were carried out in saline (3.5 wt.% NaCl) and acid aqueous media ((NH4)2SO4 containing Harrison's solution). The corrosion performance of additively manufactured substrates matched or surpassed that of the conventional alloy in Harrison's solutions while remaining inferior in saline medium, despite forming a thicker passive film. Overall, the XY plane showed better corrosion performance, particularly after the elimination of the acicular α' martensite by the applied heat treatment. The results also suggested that the presence of the coarse ß phase was beneficial in 3.5 wt.% NaCl solution and detrimental in Harrison's solutions, more so in acidified and fluorinated conditions.

2.
J Funct Biomater ; 14(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37754889

RESUMO

To regulate the degradation rate and improve the surface biocompatibility of the AZ31B magnesium alloy, three different coating systems were produced via plasma electrolytic oxidation (PEO): simple PEO, PEO incorporating multi-walled carbon nanotubes (PEO + CNT), and a duplex coating that included a polycaprolactone top layer (PEO + CNT/PCL). Surfaces were characterized by chemical content, roughness, topography, and wettability. Biological properties analysis included cell metabolism and adhesion. PEO ± CNT resulted in an augmented surface roughness compared with the base material (BM), while PCL deposition produced the smoothest surface. All surfaces had a contact angle below 90°. The exposure of gFib-TERT and bmMSC to culture media collected after 3 or 24 h did not affect their metabolism. A decrease in metabolic activity of 9% and 14% for bmMSC and of 14% and 29% for gFib-TERT was observed after 3 and 7 days, respectively. All cells died after 7 days of exposure to BM and after 15 days of exposure to coated surfaces. Saos-2 and gFib-TERT adhered poorly to BM, in contrast to bmMSC. All cells on PEO anchored into the pores with filopodia, exhibited tiny adhesion protrusions on PEO + CNT, and presented a web-like spreading with lamellipodia on PEO + CNT/PCL. The smooth and homogenous surface of the duplex PEO + CNT/PCL coating decreased magnesium corrosion and led to better biological functionality.

3.
Metab Eng ; 79: 192-202, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611820

RESUMO

(2S)-Naringenin is a key precursor for biosynthesis of various high-value flavonoids and possesses a variety of nutritional and pharmaceutical properties on human health. Systematic optimization approaches have been employed to improve (2S)-naringenin production in different microbial hosts. However, very few studies have focused on the spatiotemporal distribution of (2S)-naringenin and the related pathway intermediate p-coumaric acid, which is an important factor for efficient production. Here, we first optimized the (2S)-naringenin biosynthetic pathway by alleviating the bottleneck downstream of p-coumaric acid and increasing malonyl-CoA supply, which improved (2S)-naringenin production but significant accumulation of p-coumaric acid still existed extracellularly. We thus established a dual dynamic control system through combining a malonyl-CoA biosensor regulator and an RNAi strategy, to autonomously control the synthesis of p-coumaric acid with the supply of malonyl-CoA. Furthermore, screening potential transporters led to identification of Pdr12 for improved (2S)-naringenin production and reduced accumulation of p-coumaric acid. Finally, a titer of 2.05 g/L (2S)-naringenin with negligible accumulation of p-coumaric acid was achieved in a fed batch fermentation. Our work highlights the importance of systematic control of pathway intermediates for efficient microbial production of plant natural products.


Assuntos
Flavanonas , Saccharomyces cerevisiae , Humanos , Ácidos Cumáricos , Malonil Coenzima A/genética
4.
AMB Express ; 13(1): 84, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561285

RESUMO

Yarrowia lipolytica has been explored as a potential production host for flavonoid synthesis due to its high tolerance to aromatic acids and ability to supply malonyl-CoA. However, little is known about its ability to consume the precursors cinnamic and p-coumaric acid. In this study, we demonstrate that Y. lipolytica can consume these precursors through multiple pathways that are partially dependent on the cultivation medium. By monitoring the aromatic acid concentrations over time, we found that cinnamic acid is converted to p-coumaric acid. We identified potential proteins with a trans-cinnamate 4-monooxygenase activity in Y. lipolytica and constructed a collection of 15 knock-out strains to identify the genes responsible for the reaction. We identified YALI1_B28430g as the gene encoding for a protein that converts cinnamic acid to p-coumaric acid (designated as TCM1). By comparing different media compositions we found that complex media components (casamino acids and yeast extract) induce this pathway. Additionally, we discover the conversion of p-coumaric acid to 4-hydroxybenzoic acid. Our findings provide new insight into the metabolic capabilities of Y. lipolytica and hold great potential for the future development of improved strains for flavonoid production.

5.
Microb Cell Fact ; 22(1): 74, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37076829

RESUMO

BACKGROUND: Two important flavonoids, kaempferol and quercetin possess remarkably potent biological impacts on human health. However, their structural complexity and low abundance in nature make both bulk chemical synthesis and extraction from native plants difficult. Therefore microbial production via heterologous expression of plant enzymes can be a safe and sustainable route for their production. Despite several attempts reported in microbial hosts, the production levels of kaempferol and quercetin still stay far behind compared to many other microbial-produced flavonoids. RESULTS: In this study, Saccharomyces cerevisiae was engineered for high production of kaempferol and quercetin in minimal media from glucose. First, the kaempferol biosynthetic pathway was reconstructed via screening various F3H and FLS enzymes. In addition, we demonstrated that amplification of the rate-limiting enzyme AtFLS could reduce the dihydrokaempferol accumulation and improve kaempferol production. Increasing the availability of precursor malonyl-CoA further improved the production of kaempferol and quercetin. Furthermore, the highest amount of 956 mg L- 1 of kaempferol and 930 mg L- 1 of quercetin in yeast was reached in fed-batch fermentations. CONCLUSIONS: De novo biosynthesis of kaempferol and quercetin in yeast was improved through increasing the upstream naringenin biosynthesis and debugging the flux-limiting enzymes together with fed-batch fermentations, up to gram per liter level. Our work provides a promising platform for sustainable and scalable production of kaempferol, quercetin and compounds derived thereof.


Assuntos
Quercetina , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quercetina/metabolismo , Quempferóis , Flavonoides , Fermentação
6.
ACS Synth Biol ; 12(1): 144-152, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36534476

RESUMO

The flavonoid pinocembrin and its derivatives have gained increasing interest for their benefits on human health. While pinocembrin and its derivatives can be produced in engineered Saccharomyces cerevisiae, yields remain low. Here, we describe novel strategies for improved de novo biosynthesis of pinocembrin from glucose based on overcoming existing limitations in S. cerevisiae. First, we identified cinnamic acid as an inhibitor of pinocembrin synthesis. Second, by screening for more efficient enzymes and optimizing the expression of downstream genes, we reduced cinnamic acid accumulation. Third, we addressed other limiting factors by boosting the availability of the precursor malonyl-CoA, while eliminating the undesired byproduct 2',4',6'-trihydroxy dihydrochalcone. After optimizing cultivation conditions, 80 mg/L pinocembrin was obtained in a shake flask, the highest yield reported for S. cerevisiae. Finally, we demonstrated that pinocembrin-producing strains could be further engineered to generate 25 mg/L chrysin, another interesting flavone. The strains generated in this study will facilitate the production of flavonoids through the pinocembrin biosynthetic pathway.


Assuntos
Flavanonas , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica
7.
Materials (Basel) ; 15(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499985

RESUMO

Owing to the unique active corrosion protection characteristic of hexavalent chromium-based systems, they have been projected to be highly effective solutions against the corrosion of many engineering metals. However, hexavalent chromium, rendered a highly toxic and carcinogenic substance, is being phased out of industrial applications. Thus, over the past few years, extensive and concerted efforts have been made to develop environmentally friendly alternative technologies with comparable or better corrosion protection performance to that of hexavalent chromium-based technologies. The introduction of corrosion inhibitors to a coating system on magnesium surface is a cost-effective approach not only for improving the overall corrosion protection performance, but also for imparting active inhibition during the service life of the magnesium part. Therefore, in an attempt to resemble the unique active corrosion protection characteristic of the hexavalent chromium-based systems, the incorporation of inhibitors to barrier coatings on magnesium alloys has been extensively investigated. In Part III of the Review, several types of corrosion inhibitors for magnesium and its alloys are reviewed. A discussion of the state-of-the-art inhibitor systems, such as iron-binding inhibitors and inhibitor mixtures, is presented, and perspective directions of research are outlined, including in silico or computational screening of corrosion inhibitors. Finally, the combination of corrosion inhibitors with other corrosion protection strategies is reviewed. Several reported highly protective coatings with active inhibition capabilities stemming from the on-demand activation of incorporated inhibitors can be considered a promising replacement for hexavalent chromium-based technologies, as long as their deployment is adequately addressed.

8.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500010

RESUMO

Although hexavalent chromium-based protection systems are effective and their long-term performance is well understood, they can no longer be used due to their proven Cr(VI) toxicity and carcinogenic effect. The search for alternative protection technologies for Mg alloys has been going on for at least a couple of decades. However, surface treatment systems with equivalent efficacies to that of Cr(VI)-based ones have only begun to emerge much more recently. It is still proving challenging to find sufficiently protective replacements for Cr(VI) that do not give rise to safety concerns related to corrosion, especially in terms of fulfilling the requirements of the transportation industry. Additionally, in overcoming these obstacles, the advantages of newly introduced technologies have to include not only health safety but also need to be balanced against their added cost, as well as being environmentally friendly and simple to implement and maintain. Anodizing, especially when carried out above the breakdown potential (technology known as Plasma Electrolytic Oxidation (PEO)) is an electrochemical oxidation process which has been recognized as one of the most effective methods to significantly improve the corrosion resistance of Mg and its alloys by forming a protective ceramic-like layer on their surface that isolates the base material from aggressive environmental agents. Part II of this review summarizes developments in and future outlooks for Mg anodizing, including traditional chromium-based processes and newly developed chromium-free alternatives, such as PEO technology and the use of organic electrolytes. This work provides an overview of processing parameters such as electrolyte composition and additives, voltage/current regimes, and post-treatment sealing strategies that influence the corrosion performance of the coatings. This large variability of the fabrication conditions makes it possible to obtain Cr-free products that meet the industrial requirements for performance, as expected from traditional Cr-based technologies.

9.
Materials (Basel) ; 15(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500170

RESUMO

Corrosion protection systems based on hexavalent chromium are traditionally perceived to be a panacea for many engineering metals including magnesium alloys. However, bans and strict application regulations attributed to environmental concerns and the carcinogenic nature of hexavalent chromium have driven a considerable amount of effort into developing safer and more environmentally friendly alternative techniques that provide the desired corrosion protection performance for magnesium and its alloys. Part I of this review series considers the various pre-treatment methods as the earliest step involved in the preparation of Mg surfaces for the purpose of further anti-corrosion treatments. The decisive effect of pre-treatment on the corrosion properties of both bare and coated magnesium is discussed. The second section of this review covers the fundamentals and performance of conventional and state-of-the-art conversion coating formulations including phosphate-based, rare-earth-based, vanadate, fluoride-based, and LDH. In addition, the advantages and challenges of each conversion coating formulation are discussed to accommodate the perspectives on their application and future development. Several auspicious corrosion protection performances have been reported as the outcome of extensive ongoing research dedicated to the development of conversion coatings, which can potentially replace hazardous chromium(VI)-based technologies in industries.

10.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143626

RESUMO

In this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques-namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained. A more compact PEO coating was found on the Al substrate, with a lower porosity compared to Mg substrates under the same processing parameters. Furthermore, huge pore clusters were detected with microCT. Overall, 2D surface porosity calculations did not show sufficient accuracy for them to become the recommended method for the exact evaluation of the porosity of PEO coatings; microCT is a more appropriate method for porosity evaluation compared to SEM imaging. Moreover, the advantage of 3D microCT images clearly lies in the detection of closed and open porosity, which are important for coating properties.

11.
Microb Cell Fact ; 21(1): 36, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264156

RESUMO

BACKGROUND: Affibody molecules are synthetic peptides with a variety of therapeutic and diagnostic applications. To date, Affibody molecules have mainly been produced by the bacterial production host Escherichia coli. There is an interest in exploring alternative production hosts to identify potential improvements in terms of yield, ease of production and purification advantages. In this study, we evaluated the feasibility of Saccharomyces cerevisiae as a production chassis for this group of proteins. RESULTS: We examined the production of three different Affibody molecules in S. cerevisiae and found that these Affibody molecules were partially degraded. An albumin-binding domain, which may be attached to the Affibody molecules to increase their half-life, was identified to be a substrate for several S. cerevisiae proteases. We tested the removal of three vacuolar proteases, proteinase A, proteinase B and carboxypeptidase Y. Removal of one of these, proteinase A, resulted in intact secretion of one of the targeted Affibody molecules. Removal of either or both of the two additional proteases, carboxypeptidase Y and proteinase B, resulted in intact secretion of the two remaining Affibody molecules. The produced Affibody molecules were verified to bind their target, human HER3, as potently as the corresponding molecules produced in E. coli in an in vitro surface-plasmon resonance binding assay. Finally, we performed a fed-batch fermentation with one of the engineered protease-deficient S. cerevisiae strains and achieved a protein titer of 530 mg Affibody molecule/L. CONCLUSION: This study shows that engineered S. cerevisiae has a great potential as a production host for recombinant Affibody molecules, reaching a high titer, and for proteins where endotoxin removal could be challenging, the use of S. cerevisiae obviates the need for endotoxin removal from protein produced in E. coli.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Fermentação , Humanos , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos
12.
Synth Syst Biotechnol ; 7(1): 533-540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35024480

RESUMO

The development of a cost-competitive bioprocess requires that the cell factory converts the feedstock into the product of interest at high rates and yields. However, microbial cell factories are exposed to a variety of different stresses during the fermentation process. These stresses can be derived from feedstocks, metabolism, or industrial production processes, limiting production capacity and diminishing competitiveness. Improving stress tolerance and robustness allows for more efficient production and ultimately makes a process more economically viable. This review summarises general trends and updates the most recent developments in technologies to improve the stress tolerance of microorganisms. We first look at evolutionary, systems biology and computational methods as examples of non-rational approaches. Then we review the (semi-)rational approaches of membrane and transcription factor engineering for improving tolerance phenotypes. We further discuss challenges and perspectives associated with these different approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...