Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Neurosci ; 24(12): 1699-1710, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795450

RESUMO

The striatum comprises multiple subdivisions and neural circuits that differentially control motor output. The islands of Calleja (IC) contain clusters of densely packed granule cells situated in the ventral striatum, predominantly in the olfactory tubercle (OT). Characterized by expression of the D3 dopamine receptor, the IC are evolutionally conserved, but have undefined functions. Here, we show that optogenetic activation of OT D3 neurons robustly initiates self-grooming in mice while suppressing other ongoing behaviors. Conversely, optogenetic inhibition of these neurons halts ongoing grooming, and genetic ablation reduces spontaneous grooming. Furthermore, OT D3 neurons show increased activity before and during grooming and influence local striatal output via synaptic connections with neighboring OT neurons (primarily spiny projection neurons), whose firing rates display grooming-related modulation. Our study uncovers a new role of the ventral striatum's IC in regulating motor output and has important implications for the neural control of grooming.


Assuntos
Ínsulas Olfatórias , Estriado Ventral , Animais , Corpo Estriado/metabolismo , Asseio Animal , Camundongos , Neurônios/fisiologia , Tubérculo Olfatório
3.
J Neurosci ; 40(21): 4203-4218, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312886

RESUMO

The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity.SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos
4.
Chem Senses ; 43(9): 667-695, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256909

RESUMO

In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.


Assuntos
Bulbo Olfatório/fisiologia , Transdução de Sinais , Órgão Vomeronasal/fisiologia , Animais , Axônios , Camundongos , Neurônios/fisiologia , Feromônios/fisiologia , Receptores de Feromônios/fisiologia , Olfato/fisiologia , Órgão Vomeronasal/citologia
5.
J Mol Endocrinol ; 57(3): 201-10, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27553203

RESUMO

The secretion, motility and transport by intestinal tissues are regulated among others by specialized neuroendocrine cells, the so-called enterochromaffin (EC) cells. These cells detect different luminal stimuli, such as mechanical stimuli, fatty acids, glucose and distinct chemosensory substances. The EC cells react to the changes in their environment through the release of transmitter molecules, most importantly serotonin, to mediate the corresponding physiological response. However, little is known about the molecular targets of the chemical stimuli delivered from consumed food, spices and cosmetics within EC cells. In this study, we evaluated the expression of the olfactory receptor (OR) 2J3 in the human pancreatic EC cell line QGP-1 at the mRNA and protein levels. Using ratiofluorometric Ca(2+) imaging experiments, we demonstrated that the OR2J3-specific agonist helional induces a transient dose-dependent decrease in the intracellular Ca(2+) levels. This Ca(2+) decrease is mediated by protein kinase G (PKG) on the basis that the specific pharmacological inhibition of PKG with Rp-8-pCPT-cGMPS abolished the helional-induced Ca(2+) response. Furthermore, stimulation of QGP-1 cells with helional caused a dose-dependent release of serotonin that was comparable with the release induced by the application of a direct PKG activator (8-bromo-cGMP). Taken together, our results demonstrate that luminal odorants can be detected by specific ORs in QGP-1 cells and thus cause the directed release of serotonin and a PKG-dependent decrease in intracellular Ca(2.)


Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Sinalização do Cálcio , Linhagem Celular , Células Cultivadas , Células Enterocromafins/metabolismo , Expressão Gênica , Humanos , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
6.
PLoS One ; 11(8): e0159640, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494699

RESUMO

The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30.


Assuntos
Estradiol/farmacologia , Potenciais Evocados/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Progesterona/farmacologia , Animais , Benzaldeídos/farmacologia , AMP Cíclico/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA/química , RNA/genética , RNA/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Análise de Sequência de RNA
7.
Front Cell Neurosci ; 10: 63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065801

RESUMO

It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

8.
Chem Senses ; 41(4): 313-23, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839357

RESUMO

Mammalian odor reception is achieved by highly specialized olfactory sensory neurons (OSNs) located in the nasal cavity. Despite their importance for the daily survival of most mammals, the gene expression and regulatory profiles of these single neurons are poorly understood. Here, we report the isolation of individual GFP-labeled OSNs from Olfr73-GFP mice at different developmental stages followed by Next Generation Sequencing, thereby analyzing the detailed transcriptome for the first time. We characterized the repertoire of olfactory receptors (ORs) and found that in addition to the highly and predominant detectable Olfr73, 20 additional ORs were stably detectable at lower transcript levels in adult mice. Additionally, OSNs collected from mice of earlier developmental stages did not show any stable OR patterns. However, more than one predominant OR per OSN was detectable.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , RNA/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA/química , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...